Late to post-Variscan sedimentary basins of Sardinia were influenced during Pennsylvanian to Permian times by two main tectono-sedimentary cycles: a Pennsylvanian to Cisuralian cycle represented mainly by dark limnic deposits, overlain by a Guadalupian to a possibly Lopingian cycle, mostly characterized by red-bed deposits. Lacustrine waterbodies developed in some sedimentary basins that were filled with siliciclastic to frequently early silicified carbonate deposits, depending on the climate and environmental conditions, landscape morphology and tectonic regime. The limnic successions of the lower tectono-sedimentary cycle were deposited in permanent, tens of metres deep lakes in deep, narrow tectonic strike-slip basins under a temperate to warm-humid climate. They started as lakes with terrigenous sedimentary input and developed minor carbonate deposits mainly at the end of their story. Conversely, the red-bed successions of the upper cycle were deposited in ephemeral, shallow playa lakes related to wider basins in an extensive alluvial plain under a hot and arid climate. Here, the siliciclastic sediments are intercalated with thin carbonate beds that are typical of a high evaporation rate. The evolution of the lake type could be related not only to a major climatic shift, but also to the changing morphotectonic conditions of the Variscan chain influencing the local microclimate. Comparisons with coeval successions in the Provence Basin, the Massif Central Aumance basin (France) and the Saar-Nahe Basin (Germany) show both similarities and differences between the basins.

The carbonates of the post-Variscan basins of Sardinia: the evolution from Carboniferous-Permian humid-persistent to Permian arid-ephemeral lakes in a morphotectonic framework

Luca Giacomo Costamagna
Primo
2019-01-01

Abstract

Late to post-Variscan sedimentary basins of Sardinia were influenced during Pennsylvanian to Permian times by two main tectono-sedimentary cycles: a Pennsylvanian to Cisuralian cycle represented mainly by dark limnic deposits, overlain by a Guadalupian to a possibly Lopingian cycle, mostly characterized by red-bed deposits. Lacustrine waterbodies developed in some sedimentary basins that were filled with siliciclastic to frequently early silicified carbonate deposits, depending on the climate and environmental conditions, landscape morphology and tectonic regime. The limnic successions of the lower tectono-sedimentary cycle were deposited in permanent, tens of metres deep lakes in deep, narrow tectonic strike-slip basins under a temperate to warm-humid climate. They started as lakes with terrigenous sedimentary input and developed minor carbonate deposits mainly at the end of their story. Conversely, the red-bed successions of the upper cycle were deposited in ephemeral, shallow playa lakes related to wider basins in an extensive alluvial plain under a hot and arid climate. Here, the siliciclastic sediments are intercalated with thin carbonate beds that are typical of a high evaporation rate. The evolution of the lake type could be related not only to a major climatic shift, but also to the changing morphotectonic conditions of the Variscan chain influencing the local microclimate. Comparisons with coeval successions in the Provence Basin, the Massif Central Aumance basin (France) and the Saar-Nahe Basin (Germany) show both similarities and differences between the basins.
2019
lacustrine basins; carbonates; sedimentology;climate changes; Carboniferous–Permian; Sardinia
File in questo prodotto:
File Dimensione Formato  
Costamagna -carbonates_of_the_postvariscan_basins_of_sardinia.pdf

Solo gestori archivio

Descrizione: Articolo principale
Tipologia: versione editoriale
Dimensione 4.88 MB
Formato Adobe PDF
4.88 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/270406
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact