Pentameric ligand-gated ion channels (pLGICs) are an important class of widely expressed membrane neuroreceptors, which play a crucial role in fast synaptic communications and are involved in several neurological conditions. They are activated by the binding of neurotransmitters, which trigger the transmission of an electrical signal via facilitated ion flux. They can also be activated, inhibited or modulated by a number of drugs. Mutagenesis electrophysiology experiments, with natural or unnatural amino acids, have provided a large body of functional data that, together with emerging structural information from X-ray spectroscopy and cryo-electron microscopy, are helping unravel the complex working mechanisms of these neuroreceptors. Computer simulations are complementing these mutagenesis experiments, with insights at various levels of accuracy and resolution. Here, we review how a selection of computational tools, including first principles methods, classical molecular dynamics and enhanced sampling techniques, are contributing to construct a picture of how pLGICs function and can be pharmacologically targeted to treat the disorders they are responsible for.

Mutagenesis computer experiments in pentameric ligand-gated ion channels: the role of simulation tools with different resolution

Alessandro Crnjar;Claudio Melis;
2019-01-01

Abstract

Pentameric ligand-gated ion channels (pLGICs) are an important class of widely expressed membrane neuroreceptors, which play a crucial role in fast synaptic communications and are involved in several neurological conditions. They are activated by the binding of neurotransmitters, which trigger the transmission of an electrical signal via facilitated ion flux. They can also be activated, inhibited or modulated by a number of drugs. Mutagenesis electrophysiology experiments, with natural or unnatural amino acids, have provided a large body of functional data that, together with emerging structural information from X-ray spectroscopy and cryo-electron microscopy, are helping unravel the complex working mechanisms of these neuroreceptors. Computer simulations are complementing these mutagenesis experiments, with insights at various levels of accuracy and resolution. Here, we review how a selection of computational tools, including first principles methods, classical molecular dynamics and enhanced sampling techniques, are contributing to construct a picture of how pLGICs function and can be pharmacologically targeted to treat the disorders they are responsible for.
2019
pentameric ligand-gated ion channels; mutagenesis electrophysiology experiments; first principles methods; molecular dynamics; enhanced sampling methods; metadynamics
File in questo prodotto:
File Dimensione Formato  
rsfs.2018.0067 (1).pdf

Solo gestori archivio

Tipologia: versione editoriale
Dimensione 1.9 MB
Formato Adobe PDF
1.9 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/270584
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact