The authors propose a numerical method to approximate the solution of specific bivariate Volterra integral equations which arise in the numerical solution of the initial value problem for the Korteweg-de Vries equation. A preliminary study of the domain of the unknown function is carried out and a general algorithm based on the Gauss-Legendre and Newton-Cotes quadrature formulae is developed. Numerical tests are also given in order to show the efficiency of the method.

A numerical method to compute the scattering solution for the KdV equation

Luisa Fermo;Cornelis van der Mee;Sebastiano Seatzu
2020-01-01

Abstract

The authors propose a numerical method to approximate the solution of specific bivariate Volterra integral equations which arise in the numerical solution of the initial value problem for the Korteweg-de Vries equation. A preliminary study of the domain of the unknown function is carried out and a general algorithm based on the Gauss-Legendre and Newton-Cotes quadrature formulae is developed. Numerical tests are also given in order to show the efficiency of the method.
2020
Volterra integral equations; Korteweg-de Vries equation
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0168927419301734-main.pdf

Solo gestori archivio

Descrizione: articolo principale
Tipologia: versione editoriale (VoR)
Dimensione 388.65 kB
Formato Adobe PDF
388.65 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/272252
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact