Protein misfolding and amyloid formation are associated with various human diseases including Alzheimer's disease (AD), Parkinson's disease (PD), and Type-2 Diabetes mellitus (T2DM). No disease-modifying therapeutics are available for them. Despite the lack of sequence homology between the corresponding proteins, aromatic residues are recognized as common key motifs in the formation and stabilization of amyloid structures via π-π stacking. Thus, targeting aromatic recognition interfaces could be a useful approach for inhibiting amyloid formation as well as disrupting the preformed amyloid fibrils. Combining experimental and computational approaches, we demonstrated the anti-amyloidogenic effect of naphthoquinone-tryptophan-based hybrid molecules toward PHF6 (τ-derived aggregative peptide), Amyloid β (Aβ42), and human islet amyloid polypeptide (hIAPP) implicated in AD and T2DM, respectively. These hybrid molecules significantly inhibited the aggregation and disrupted their preformed fibrillar aggregates in vitro, in a dose-dependent manner as evident from Thioflavin T/S binding assay, CD spectroscopy, and electron microscopy. Dye leakage assay from LUVs and cell-based experiments indicated that the hybrid molecules inhibit membrane disruption and cytotoxicity induced by these amyloids. Furthermore, in silico studies provided probable mechanistic insights into the interaction of these molecules with the amyloidogenic proteins in their monomeric or aggregated forms, including the role of hydrophobic interaction, hydrogen bond formation, and packing during inhibition of aggregation and fibril disassembly. Our findings may help in designing novel therapeutics toward AD, T2DM, and other proteinopathies based on the naphthoquinone derived hybrid molecules.

Antagonistic Activity of Naphthoquinone-Based Hybrids toward Amyloids Associated with Alzheimer's Disease and Type-2 Diabetes

TYRRELL, PAUL ANTHONY;Balboni G.;
2019-01-01

Abstract

Protein misfolding and amyloid formation are associated with various human diseases including Alzheimer's disease (AD), Parkinson's disease (PD), and Type-2 Diabetes mellitus (T2DM). No disease-modifying therapeutics are available for them. Despite the lack of sequence homology between the corresponding proteins, aromatic residues are recognized as common key motifs in the formation and stabilization of amyloid structures via π-π stacking. Thus, targeting aromatic recognition interfaces could be a useful approach for inhibiting amyloid formation as well as disrupting the preformed amyloid fibrils. Combining experimental and computational approaches, we demonstrated the anti-amyloidogenic effect of naphthoquinone-tryptophan-based hybrid molecules toward PHF6 (τ-derived aggregative peptide), Amyloid β (Aβ42), and human islet amyloid polypeptide (hIAPP) implicated in AD and T2DM, respectively. These hybrid molecules significantly inhibited the aggregation and disrupted their preformed fibrillar aggregates in vitro, in a dose-dependent manner as evident from Thioflavin T/S binding assay, CD spectroscopy, and electron microscopy. Dye leakage assay from LUVs and cell-based experiments indicated that the hybrid molecules inhibit membrane disruption and cytotoxicity induced by these amyloids. Furthermore, in silico studies provided probable mechanistic insights into the interaction of these molecules with the amyloidogenic proteins in their monomeric or aggregated forms, including the role of hydrophobic interaction, hydrogen bond formation, and packing during inhibition of aggregation and fibril disassembly. Our findings may help in designing novel therapeutics toward AD, T2DM, and other proteinopathies based on the naphthoquinone derived hybrid molecules.
2019
aggregation; Alzheimer’s disease; Aβ; IAPP; Type 2 diabetes; τ-protein
File in questo prodotto:
File Dimensione Formato  
ACS Chem Neuroscience 2019-compresso (1).pdf

Solo gestori archivio

Tipologia: versione editoriale
Dimensione 829.42 kB
Formato Adobe PDF
829.42 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/277134
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 24
social impact