Nearly zero-energy buildings (NZEBs) are high energy performance buildings in which part of the amount of energy that these buildings require comes mostly from renewable sources. In order to obtain the target of nearly zero energy consumption, the electrical loads and the energy sources related to the NZEB building can be organized as a Microgrid, which needs to be optimally sized in his components. The optimal sizing of a Microgrid for NZEBs can be formulated as multi-objective problem. In fact, for the NZEB owner exists an economic target aimed at maximizing profits from microgeneration, a different one aimed solely to minimize the energy bought from the market and an environmental target aimed at minimizing the global CO2 emissions. These objectives can enter into conflict and create the need for combined optimization. In this paper, this optimization problem is investigated with an integrated framework addressing the multi-objective optimization and multi-criteria evaluation issues simultaneously. Minimize the investment cost, maximize the fraction of energy self-consumed with renewable energy sources and reduce the CO2 emissions will be considered as three objectives for multi-objective optimization. The proposed methodology is applied to a microgrid for a NZEB public building. The simulation results show the effectiveness of the proposed methodology.

Multi-Objective and Multi-Criteria Optimization of Microgrids for Nearly Zero-Energy Buildings

Emilio Ghiani
Writing – Original Draft Preparation
;
Fabrizio Pilo
Membro del Collaboration Group
2019-01-01

Abstract

Nearly zero-energy buildings (NZEBs) are high energy performance buildings in which part of the amount of energy that these buildings require comes mostly from renewable sources. In order to obtain the target of nearly zero energy consumption, the electrical loads and the energy sources related to the NZEB building can be organized as a Microgrid, which needs to be optimally sized in his components. The optimal sizing of a Microgrid for NZEBs can be formulated as multi-objective problem. In fact, for the NZEB owner exists an economic target aimed at maximizing profits from microgeneration, a different one aimed solely to minimize the energy bought from the market and an environmental target aimed at minimizing the global CO2 emissions. These objectives can enter into conflict and create the need for combined optimization. In this paper, this optimization problem is investigated with an integrated framework addressing the multi-objective optimization and multi-criteria evaluation issues simultaneously. Minimize the investment cost, maximize the fraction of energy self-consumed with renewable energy sources and reduce the CO2 emissions will be considered as three objectives for multi-objective optimization. The proposed methodology is applied to a microgrid for a NZEB public building. The simulation results show the effectiveness of the proposed methodology.
2019
9781728111568
Microgrid; Multiobjective Evolutionary Algorithm; NZEBs; Real-time pricing; Renewable sources;
Microgrid, NZEBs, Renewable sources, Multiobjective Evolutionary Algorithm, Real-time pricing
File in questo prodotto:
File Dimensione Formato  
SEST2019_67.pdf

Solo gestori archivio

Tipologia: versione editoriale
Dimensione 767.6 kB
Formato Adobe PDF
767.6 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/277267
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact