A complex network of symbiotic events between plants and bacteria allows the biosphere to exploit the atmospheric reservoir of molecular nitrogen. In seeds, a series of presymbiotic steps are already identified during imbibition, while interactions between the host and its symbiont begin in the early stages of germination. In the present study, a detailed analysis of the substances' complex delivered by Cicer arietinum seeds during imbibition showed a relevant presence of proteins and amino acids, which, except for cysteine, occurred with the whole proteinogenic pool. The imbibing solution was found to provide essential probiotic properties able to sustain the growth of the specific chickpea symbiont Mesorhizobium ciceri. Moreover, the imbibing solution, behaving as a complete medium, was found to be critically important for the symbiont's attraction, a fact this that is strictly related to the presence of the amino acids glycine, serine, and threonine. Here, the presence of these amino acids is constantly supported by the presence of the enzymes serine hydroxymethyltransferase and formyltetrahydrofolate deformylase, which are both involved in their biosynthesis. The reported findings are discussed in the light of the pivotal role played by the imbibing solution in attracting and sustaining symbiosis between the host and its symbiont.

Shedding light on the presymbiontic phase of C. arietinum

Farci D.;Sanna C.;Medda R.;Pintus F.;Piano D.
2019-01-01

Abstract

A complex network of symbiotic events between plants and bacteria allows the biosphere to exploit the atmospheric reservoir of molecular nitrogen. In seeds, a series of presymbiotic steps are already identified during imbibition, while interactions between the host and its symbiont begin in the early stages of germination. In the present study, a detailed analysis of the substances' complex delivered by Cicer arietinum seeds during imbibition showed a relevant presence of proteins and amino acids, which, except for cysteine, occurred with the whole proteinogenic pool. The imbibing solution was found to provide essential probiotic properties able to sustain the growth of the specific chickpea symbiont Mesorhizobium ciceri. Moreover, the imbibing solution, behaving as a complete medium, was found to be critically important for the symbiont's attraction, a fact this that is strictly related to the presence of the amino acids glycine, serine, and threonine. Here, the presence of these amino acids is constantly supported by the presence of the enzymes serine hydroxymethyltransferase and formyltetrahydrofolate deformylase, which are both involved in their biosynthesis. The reported findings are discussed in the light of the pivotal role played by the imbibing solution in attracting and sustaining symbiosis between the host and its symbiont.
2019
Chemotaxis; Cicer arietinum; Imbibition; Mesorhizobium ciceri; Nitrogen fixation; Plant-microbes interactions
File in questo prodotto:
File Dimensione Formato  
2019_Cicer arietinum_Plant Physiology and Biochemistry.pdf

Solo gestori archivio

Tipologia: versione editoriale (VoR)
Dimensione 1.51 MB
Formato Adobe PDF
1.51 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/277315
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact