The robustness of wearable Ultra-High Frequency (UHF)-band planar inverted-F Antennas (PIFAs) with respect to coupling with the human body is an extremely difficult challenge for the designer. In this work a design strategy is presented to help the designer to adequately shape and extend the antenna ground plane, which has been derived by accurately analyzing the distribution of the electric and magnetic energy densities of the antenna in a region around the antenna borders. The optimal extension of the ground plane will be discussed for three different grounded antennas, both in terms of free space wavelength, and in terms of electric energy density magnitude. Following these rules, the antenna robustness with respect to the coupling with the human body can be significantly improved, but with a minimal impact on the antenna size. The antenna robustness has been successfully tested considering several models for the human phantom in the simulation environment. The numerical simulations, performed using Computer Simulation Technology (CST) Microwave Studio, have been confirmed by experimental data measured for one of the analyzed grounded antenna configurations.
A design rule to reduce the human body effect on wearable pifa antennas
Casula G. A.Primo
;Montisci G.Secondo
2019-01-01
Abstract
The robustness of wearable Ultra-High Frequency (UHF)-band planar inverted-F Antennas (PIFAs) with respect to coupling with the human body is an extremely difficult challenge for the designer. In this work a design strategy is presented to help the designer to adequately shape and extend the antenna ground plane, which has been derived by accurately analyzing the distribution of the electric and magnetic energy densities of the antenna in a region around the antenna borders. The optimal extension of the ground plane will be discussed for three different grounded antennas, both in terms of free space wavelength, and in terms of electric energy density magnitude. Following these rules, the antenna robustness with respect to the coupling with the human body can be significantly improved, but with a minimal impact on the antenna size. The antenna robustness has been successfully tested considering several models for the human phantom in the simulation environment. The numerical simulations, performed using Computer Simulation Technology (CST) Microwave Studio, have been confirmed by experimental data measured for one of the analyzed grounded antenna configurations.File | Dimensione | Formato | |
---|---|---|---|
electronics-08-00244-v3.pdf
accesso aperto
Tipologia:
versione editoriale (VoR)
Dimensione
10.08 MB
Formato
Adobe PDF
|
10.08 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.