We consider the propagation of waves in a flexural medium composed of massless beams joining a periodic array of elements, elastically supported and possessing mass and rotational inertia. The dispersion properties of the system are determined and the influence and interplay between the dynamic parameters on the structure of the pass and stop bands are analysed in detail. We highlight the existence of three special dynamic regimes corresponding to a low stiffness in the supports and/or low rotational inertia of the masses; to a high stiffness and/or high rotational inertia regime; and to a transition one where dispersion degeneracies are encountered. In the low-frequency regime, a rigorous asymptotic analysis shows that the structure approximates a continuous Rayleigh beam on an elastic foundation.This article is part of the theme issue 'Modelling of dynamic phenomena and localization in structured media (part 1)'.
Dynamic characterization of a periodic microstructured flexural system with rotational inertia
Nieves M. J.Primo
;Brun M.Secondo
2019-01-01
Abstract
We consider the propagation of waves in a flexural medium composed of massless beams joining a periodic array of elements, elastically supported and possessing mass and rotational inertia. The dispersion properties of the system are determined and the influence and interplay between the dynamic parameters on the structure of the pass and stop bands are analysed in detail. We highlight the existence of three special dynamic regimes corresponding to a low stiffness in the supports and/or low rotational inertia of the masses; to a high stiffness and/or high rotational inertia regime; and to a transition one where dispersion degeneracies are encountered. In the low-frequency regime, a rigorous asymptotic analysis shows that the structure approximates a continuous Rayleigh beam on an elastic foundation.This article is part of the theme issue 'Modelling of dynamic phenomena and localization in structured media (part 1)'.File | Dimensione | Formato | |
---|---|---|---|
NievesBrunrsta20190113.pdf
Solo gestori archivio
Tipologia:
versione editoriale (VoR)
Dimensione
2.05 MB
Formato
Adobe PDF
|
2.05 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.