Marine organisms belonging to meiofauna (size range: 20-500 mu m) are amongst the most abundant and highly diversified metazoans on Earth including 22 over 35 known animal Phyla and accounting for more than 2/3 of the abundance of metazoan organisms. In any marine system, meiofauna play a key role in the functioning of the food webs and sustain important ecological processes. Estimates of meiofaunal biodiversity have been so far almost exclusively based on morphological analyses, but the very small size of these organisms and, in some cases, the insufficient morphological distinctive features limit considerably the census of the biodiversity of this component. Molecular approaches recently applied also to small invertebrates (including meiofauna) can offer a new momentum for the census of meiofaunal biodiversity. Here, we provide an overview on the application of metagenetic approaches based on the use of next generation sequencing platforms to study meiofaunal biodiversity, with a special focus on marine nematodes. Our overview shows that, although such approaches can represent a useful tool for the census of meiofaunal biodiversity, there are still different shortcomings and pitfalls that prevent their extensive use without the support of the classical taxonomic identification. Future investigations are needed to address these problems and to provide a good match between the contrasting findings emerging from classical taxonomic and molecular/bioinformatic tools. (C) 2015 Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Metagenetic tools for the census of marine meiofaunal biodiversity: An overview

Carugati L.
Primo
Writing – Original Draft Preparation
;
2015-01-01

Abstract

Marine organisms belonging to meiofauna (size range: 20-500 mu m) are amongst the most abundant and highly diversified metazoans on Earth including 22 over 35 known animal Phyla and accounting for more than 2/3 of the abundance of metazoan organisms. In any marine system, meiofauna play a key role in the functioning of the food webs and sustain important ecological processes. Estimates of meiofaunal biodiversity have been so far almost exclusively based on morphological analyses, but the very small size of these organisms and, in some cases, the insufficient morphological distinctive features limit considerably the census of the biodiversity of this component. Molecular approaches recently applied also to small invertebrates (including meiofauna) can offer a new momentum for the census of meiofaunal biodiversity. Here, we provide an overview on the application of metagenetic approaches based on the use of next generation sequencing platforms to study meiofaunal biodiversity, with a special focus on marine nematodes. Our overview shows that, although such approaches can represent a useful tool for the census of meiofaunal biodiversity, there are still different shortcomings and pitfalls that prevent their extensive use without the support of the classical taxonomic identification. Future investigations are needed to address these problems and to provide a good match between the contrasting findings emerging from classical taxonomic and molecular/bioinformatic tools. (C) 2015 Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
2015
18S rRNA gene; Biodiversity; High-throughput sequencing; Meiofauna; Metagenetic; Animals; Aquatic Organisms; Genome; Invertebrates; Metagenomics; Biodiversity
File in questo prodotto:
File Dimensione Formato  
Carugati et al 2015_Mar Genomics.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: versione editoriale
Dimensione 705.73 kB
Formato Adobe PDF
705.73 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/278589
Citazioni
  • ???jsp.display-item.citation.pmc??? 16
  • Scopus 80
  • ???jsp.display-item.citation.isi??? 72
social impact