We consider the weighted eigenvalue problem for a general non-local pseudo- differential operator, depending on a bounded weight function. For such problem, we prove that strict (decreasing) monotonicity of the eigenvalues with respect to the weight function is equivalent to the unique continuation property of eigenfunctions. In addition, we discuss some unique continuation results for the special case of the fractional Laplacian.

Strict monotonicity and unique continuation for general non-local eigenvalue problems

FRASSU, SILVIA;Iannizzotto Antonio
2020-01-01

Abstract

We consider the weighted eigenvalue problem for a general non-local pseudo- differential operator, depending on a bounded weight function. For such problem, we prove that strict (decreasing) monotonicity of the eigenvalues with respect to the weight function is equivalent to the unique continuation property of eigenfunctions. In addition, we discuss some unique continuation results for the special case of the fractional Laplacian.
2020
Non-local operators, eigenvalue problems, unique continuation
File in questo prodotto:
File Dimensione Formato  
Frassu-Iannizzotto TJM.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: versione editoriale (VoR)
Dimensione 304.89 kB
Formato Adobe PDF
304.89 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/278806
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact