We consider the weighted eigenvalue problem for a general non-local pseudo- differential operator, depending on a bounded weight function. For such problem, we prove that strict (decreasing) monotonicity of the eigenvalues with respect to the weight function is equivalent to the unique continuation property of eigenfunctions. In addition, we discuss some unique continuation results for the special case of the fractional Laplacian.
Strict monotonicity and unique continuation for general non-local eigenvalue problems
FRASSU, SILVIA;Iannizzotto Antonio
2020-01-01
Abstract
We consider the weighted eigenvalue problem for a general non-local pseudo- differential operator, depending on a bounded weight function. For such problem, we prove that strict (decreasing) monotonicity of the eigenvalues with respect to the weight function is equivalent to the unique continuation property of eigenfunctions. In addition, we discuss some unique continuation results for the special case of the fractional Laplacian.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Frassu-Iannizzotto TJM.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
versione editoriale (VoR)
Dimensione
304.89 kB
Formato
Adobe PDF
|
304.89 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.