The boosting on the need of security notably increased the amount of possible facial recognition applications, especially due to the success of the Internet of Things (IoT) paradigm. However, although handcrafted and deep learning-inspired facial features reached a significant level of compactness and expressive power, the facial recognition performance still suffers from intra-class variations such as ageing, facial expressions, lighting changes, and pose. These variations cannot be captured in a single acquisition and require multiple acquisitions of long duration, which are expensive and need a high level of collaboration from the users. Among others, self-update algorithms have been proposed in order to mitigate these problems. Self-updating aims to add novel templates to the users' gallery among the inputs submitted during system operations. Consequently, computational complexity and storage space tend to be among the critical requirements of these algorithms. The present paper deals with the above problems by a novel template-based self-update algorithm, able to keep over time the expressive power of a extit{limited} set of templates stored in the system database. The rationale behind the proposed approach is in the working hypothesis that a dominating mode characterises the features' distribution given the client. Therefore, the key point is to select the best templates around that mode. We propose two methods, which are tested on systems based on handcrafted features and deep-learning-inspired autoencoders at the state-of-the-art. Three benchmark data sets are used. Experimental results confirm that, by effective and compact feature sets which can support our working hypothesis, the proposed classification-selection approaches overcome the problem of manual updating and, in case, stringent computational requirements.

A novel classification-selection approach for the self updating of template-based face recognition systems

Orrù, Giulia;Marcialis, Gian Luca;Roli, Fabio
2020-01-01

Abstract

The boosting on the need of security notably increased the amount of possible facial recognition applications, especially due to the success of the Internet of Things (IoT) paradigm. However, although handcrafted and deep learning-inspired facial features reached a significant level of compactness and expressive power, the facial recognition performance still suffers from intra-class variations such as ageing, facial expressions, lighting changes, and pose. These variations cannot be captured in a single acquisition and require multiple acquisitions of long duration, which are expensive and need a high level of collaboration from the users. Among others, self-update algorithms have been proposed in order to mitigate these problems. Self-updating aims to add novel templates to the users' gallery among the inputs submitted during system operations. Consequently, computational complexity and storage space tend to be among the critical requirements of these algorithms. The present paper deals with the above problems by a novel template-based self-update algorithm, able to keep over time the expressive power of a extit{limited} set of templates stored in the system database. The rationale behind the proposed approach is in the working hypothesis that a dominating mode characterises the features' distribution given the client. Therefore, the key point is to select the best templates around that mode. We propose two methods, which are tested on systems based on handcrafted features and deep-learning-inspired autoencoders at the state-of-the-art. Three benchmark data sets are used. Experimental results confirm that, by effective and compact feature sets which can support our working hypothesis, the proposed classification-selection approaches overcome the problem of manual updating and, in case, stringent computational requirements.
2020
self-update, face recognition, adaptive systems
File in questo prodotto:
File Dimensione Formato  
PR__classif_selection_journal_send.pdf

Open Access dal 29/11/2021

Descrizione: Articolo principale
Tipologia: versione post-print
Dimensione 8.88 MB
Formato Adobe PDF
8.88 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/280803
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 14
social impact