A novel characterisation of dispersive waves in a vector elastic lattice is presented in the context of wave polarisation. This proves to be especially important in analysis of dynamic anisotropy and standing waves trapped within the lattice. The operators of lattice flux and lattice circulation provide the required quantitative description, especially in cases of intermediate and high frequency dynamic regimes. Dispersion diagrams are conventionally considered as the ultimate characteristics of dynamic properties of waves in periodic systems. Generally, a waveform in a lattice can be thought of as a combination of pressure-like and shear-like waves. However, a direct analogy with waves in the continuum is not always obvious. We show a coherent way to characterise lattice waveforms in terms of so-called lattice flux and lattice circulation. In the long wavelength limit, this leads to well-known interpretations of pressure and shear waves. For the cases when the wavelength is comparable with the size of the lattice cell, new features are revealed which involve special directions along which either lattice flux or lattice circulation is zero. The cases of high frequency and wavelength comparable to the size of the elementary cell are considered, including dynamic anisotropy and dynamic neutrality in structured solids.

Wave Characterisation in a Dynamic Elastic Lattice: Lattice Flux and Circulation

Carta G.
Primo
;
2019-01-01

Abstract

A novel characterisation of dispersive waves in a vector elastic lattice is presented in the context of wave polarisation. This proves to be especially important in analysis of dynamic anisotropy and standing waves trapped within the lattice. The operators of lattice flux and lattice circulation provide the required quantitative description, especially in cases of intermediate and high frequency dynamic regimes. Dispersion diagrams are conventionally considered as the ultimate characteristics of dynamic properties of waves in periodic systems. Generally, a waveform in a lattice can be thought of as a combination of pressure-like and shear-like waves. However, a direct analogy with waves in the continuum is not always obvious. We show a coherent way to characterise lattice waveforms in terms of so-called lattice flux and lattice circulation. In the long wavelength limit, this leads to well-known interpretations of pressure and shear waves. For the cases when the wavelength is comparable with the size of the lattice cell, new features are revealed which involve special directions along which either lattice flux or lattice circulation is zero. The cases of high frequency and wavelength comparable to the size of the elementary cell are considered, including dynamic anisotropy and dynamic neutrality in structured solids.
2019
dynamic anisotropy; elastic waves; lattice flux and circulation; lattice structures
File in questo prodotto:
File Dimensione Formato  
Pre-print.pdf

accesso aperto

Tipologia: versione pre-print
Dimensione 3.62 MB
Formato Adobe PDF
3.62 MB Adobe PDF Visualizza/Apri
Carta2019_Article_WaveCharacterisationInADynamic.pdf

Solo gestori archivio

Descrizione: articolo
Tipologia: versione editoriale (VoR)
Dimensione 492.48 kB
Formato Adobe PDF
492.48 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/284350
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact