In microscopy, laboratory tests make use of cell counters or flow cytometers to perform tests on blood cells, like the complete blood count, rapidly. However, a manual blood smear examination is still needed to verify the counter results and to monitor patients under therapy. Moreover, the manual inspection permits the description of the cells' appearance, as well as any abnormalities. Unfortunately, manual analysis is long and tedious, and its result can be subjective and error-prone. Nevertheless, using image processing techniques, it is possible to automate the entire workflow, both reducing the operators' workload and improving the diagnosis results. In this paper, we propose a novel method for recognizing white blood cells from microscopic blood images and classify them as healthy or affected by leukemia. The presented system is tested on public datasets for leukemia detection, the SMC-IDB, the IUMS-IDB, and the ALL-IDB. The results are promising, achieving 100% accuracy for the first two datasets and 99.7% for the ALL-IDB in white cells detection and 94.1% in leukemia classification, outperforming the state-of-the-art.
Blob detection and deep learning for leukemic blood image analysis
Di Ruberto C.;Loddo A.;Puglisi G.
2020-01-01
Abstract
In microscopy, laboratory tests make use of cell counters or flow cytometers to perform tests on blood cells, like the complete blood count, rapidly. However, a manual blood smear examination is still needed to verify the counter results and to monitor patients under therapy. Moreover, the manual inspection permits the description of the cells' appearance, as well as any abnormalities. Unfortunately, manual analysis is long and tedious, and its result can be subjective and error-prone. Nevertheless, using image processing techniques, it is possible to automate the entire workflow, both reducing the operators' workload and improving the diagnosis results. In this paper, we propose a novel method for recognizing white blood cells from microscopic blood images and classify them as healthy or affected by leukemia. The presented system is tested on public datasets for leukemia detection, the SMC-IDB, the IUMS-IDB, and the ALL-IDB. The results are promising, achieving 100% accuracy for the first two datasets and 99.7% for the ALL-IDB in white cells detection and 94.1% in leukemia classification, outperforming the state-of-the-art.File | Dimensione | Formato | |
---|---|---|---|
AppliedSciences_2020_Stampa.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
versione editoriale
Dimensione
7.76 MB
Formato
Adobe PDF
|
7.76 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.