Iterative soft thresholding algorithms combine one step of a Landweber method (or accelerated variants) with one step of thresholding of the wavelet (framelet) coefficients. In this paper, we improve these methods by using the framelet multilevel decomposition for defining a multigrid deconvolution with grid transfer operators given by the low-pass filter of the frame. Assuming that an estimate of the noise level is available, we combine a recently proposed iterative method for ℓ2-regularization with linear framelet denoising by soft-thresholding. This combination allows a fast frequency filtering in the Fourier domain and produces a sparse reconstruction in the wavelet domain. Moreover, its employment in a multigrid scheme ensures stable convergence and a reduced noise amplification. The proposed multigrid method is independent of the imposed boundary conditions, and the iterations can be easily projected onto a closed and convex set, e.g., the nonnegative cone. We study the convergence of the proposed algorithm and prove that it is a regularization method. Several numerical results prove that this approach is able to provide highly accurate reconstructions in several different scenarios without requiring the setting of any parameter.

A multigrid frame based method for image deblurring

Buccini, Alessandro
;
2020

Abstract

Iterative soft thresholding algorithms combine one step of a Landweber method (or accelerated variants) with one step of thresholding of the wavelet (framelet) coefficients. In this paper, we improve these methods by using the framelet multilevel decomposition for defining a multigrid deconvolution with grid transfer operators given by the low-pass filter of the frame. Assuming that an estimate of the noise level is available, we combine a recently proposed iterative method for ℓ2-regularization with linear framelet denoising by soft-thresholding. This combination allows a fast frequency filtering in the Fourier domain and produces a sparse reconstruction in the wavelet domain. Moreover, its employment in a multigrid scheme ensures stable convergence and a reduced noise amplification. The proposed multigrid method is independent of the imposed boundary conditions, and the iterations can be easily projected onto a closed and convex set, e.g., the nonnegative cone. We study the convergence of the proposed algorithm and prove that it is a regularization method. Several numerical results prove that this approach is able to provide highly accurate reconstructions in several different scenarios without requiring the setting of any parameter.
image deblurring, multigrid methods, iterative regularization methods
File in questo prodotto:
File Dimensione Formato  
MGM.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: altro documento allegato
Dimensione 682.82 kB
Formato Adobe PDF
682.82 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/287672
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact