Despite the success obtained in face detection and recognition over the last ten years of research, the analysis of facial attributes still represents a trend topic. Keeping the full face recognition aside, exploring the potentials of soft biometric traits, i.e. singular facial traits like the nose, the mouth, the hair and so on, is yet considered a fruitful field of investigation. Being able to infer the identity of an occluded face, e.g. voluntary occluded by sunglasses or accidentally due to environmental factors, can be useful in a wide range of operative fields where user collaboration cannot be considered as an assumption. This especially happens when dealing with forensic scenarios in which is not unusual to have partial face photos or partial fingerprints. In this paper, an unsupervised clustering approach is described. It consists in a neural network model for face attributes recognition based on transfer learning whose goal is grouping faces according to common facial features. Moreover, we use the features collected in each cluster to provide a compact and comprehensive description of the faces belonging to each cluster and deep learning as a mean for task prediction in partially visible faces.

Clustering facial attributes: Narrowing the path from soft to hard biometrics

Abate A. F.;Barra S.;
2020-01-01

Abstract

Despite the success obtained in face detection and recognition over the last ten years of research, the analysis of facial attributes still represents a trend topic. Keeping the full face recognition aside, exploring the potentials of soft biometric traits, i.e. singular facial traits like the nose, the mouth, the hair and so on, is yet considered a fruitful field of investigation. Being able to infer the identity of an occluded face, e.g. voluntary occluded by sunglasses or accidentally due to environmental factors, can be useful in a wide range of operative fields where user collaboration cannot be considered as an assumption. This especially happens when dealing with forensic scenarios in which is not unusual to have partial face photos or partial fingerprints. In this paper, an unsupervised clustering approach is described. It consists in a neural network model for face attributes recognition based on transfer learning whose goal is grouping faces according to common facial features. Moreover, we use the features collected in each cluster to provide a compact and comprehensive description of the faces belonging to each cluster and deep learning as a mean for task prediction in partially visible faces.
2020
Clustering methods; convolutional neural networks; Eigenfaces; face detection; principal component analysis
File in questo prodotto:
File Dimensione Formato  
IEEE_ACCESS___Richiesto_da_MICHELE_con_CRISTIAN_MOLINARI.pdf

accesso aperto

Descrizione: articolo principale
Tipologia: versione post-print (AAM)
Dimensione 2.76 MB
Formato Adobe PDF
2.76 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/288733
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 19
social impact