In the extremophile bacterium Deinococcus radiodurans, the outermost surface layer is tightly connected with the rest of the cell wall. This integrated organization provides a compact structure that shields the bacterium against environmental stresses. The fundamental unit of this surface layer (S-layer) is the S-layer deinoxanthin-binding complex (SDBC), which binds the carotenoid deinoxanthin and provides both, thermostability and UV radiation resistance. However, the structural organization of the SDBC awaits elucidation. Here, we report the isolation of the SDBC with a gentle procedure consisting of lysozyme treatment and solubilization with the nonionic detergent n-dodecyl-β-D-maltoside, which preserved both hydrophilic and hydrophobic components of the SDBC and allows the retention of several minor subunits. As observed by low-resolution single-particle analysis, we show that the complex possesses a porin-like structural organization, but is larger than other known porins. We also noted that the main SDBC component, the protein DR_2577, shares regions of similarity with known porins. Moreover, results from electrophysiological assays with membrane-reconstituted SDBC disclosed that it is a nonselective channel that has some peculiar gating properties, but also exhibits behavior typically observed in pore-forming proteins, such as porins and ionic transporters. The functional properties of this system and its porin-like organization provide information critical for understanding ion permeability through the outer cell surface of S-layer-carrying bacterial species.

Structural insights into the main S-layer unit of Deinococcus radiodurans reveal a massive protein complex with porin-like features

Farci D.
;
Bodrenko I.;Ceccarelli M.;Winterhalter M.;Piano D.
2020-01-01

Abstract

In the extremophile bacterium Deinococcus radiodurans, the outermost surface layer is tightly connected with the rest of the cell wall. This integrated organization provides a compact structure that shields the bacterium against environmental stresses. The fundamental unit of this surface layer (S-layer) is the S-layer deinoxanthin-binding complex (SDBC), which binds the carotenoid deinoxanthin and provides both, thermostability and UV radiation resistance. However, the structural organization of the SDBC awaits elucidation. Here, we report the isolation of the SDBC with a gentle procedure consisting of lysozyme treatment and solubilization with the nonionic detergent n-dodecyl-β-D-maltoside, which preserved both hydrophilic and hydrophobic components of the SDBC and allows the retention of several minor subunits. As observed by low-resolution single-particle analysis, we show that the complex possesses a porin-like structural organization, but is larger than other known porins. We also noted that the main SDBC component, the protein DR_2577, shares regions of similarity with known porins. Moreover, results from electrophysiological assays with membrane-reconstituted SDBC disclosed that it is a nonselective channel that has some peculiar gating properties, but also exhibits behavior typically observed in pore-forming proteins, such as porins and ionic transporters. The functional properties of this system and its porin-like organization provide information critical for understanding ion permeability through the outer cell surface of S-layer-carrying bacterial species.
2020
Deinococcus radiodurans; S-layer; S-layer deinoxanthin–binding complex (SDBC); Electron microscopy (EM); Electrophysiology; Gating; Mass spectrometry (MS); Membrane protein; Porin-like complex; Protein structure; Stress resistance; Structure–function
File in questo prodotto:
File Dimensione Formato  
JBC_2020.pdf

Solo gestori archivio

Tipologia: versione post-print
Dimensione 3.49 MB
Formato Adobe PDF
3.49 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/290109
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
social impact