Drosophila suzukii Matsumura (Diptera: Drosophilidae) is an invasive, destructive crop pest that originated in South East Asia. D. suzukii recently invaded Western countries and is threatening both European and American fruit industries. It is extremely attracted to otherwise undamaged, ripening fruits, unlike most other Drosophila species that attack only decaying or rotten fruits. Recent studies on different insect species showed that several naturally occurring compounds of easy market availability showing deterrent action may be used to supplement mass catches with food traps. Based on these considerations, the aim of the present work was to test the effects of some natural compounds (alone or in the mixture) on the olfactory system of the D. suzukii and the behavioral responses evoked. We measured by electroantennogram (EAG) recordings, the olfactory sensitivity of antennae to increasing concentrations of eugenol, vanillin, menthol, cis‐jasmone; eugenol + vanillin, +menthol, +cis‐jasmone; vanillin + menthol, +cis‐jasmone. In addition, the behavioral responses to the same compounds and mixtures were evaluated. Our electrophysiological results show a dose‐response relationship between the EAG amplitudes and the increasing concentrations of the olfactory compound. The behavioral results show that the number of laid eggs is significantly different between the standard diet and the standard diet + natural compound. These results underline a specificity in the olfactory sensitivity and in the ovipositing behavior of D. suzukii females; also, they could be valuable for the identification of key chemicals aimed at the future development of strategies in the management and control of this harmful insect for crops.

Association between olfactory sensitivity and behavioral responses of Drosophila suzukii to naturally occurring volatile compounds

Giulia Corda
Primo
;
Paolo Solari;Roberto Crnjar;Giorgia Sollai
Ultimo
2020

Abstract

Drosophila suzukii Matsumura (Diptera: Drosophilidae) is an invasive, destructive crop pest that originated in South East Asia. D. suzukii recently invaded Western countries and is threatening both European and American fruit industries. It is extremely attracted to otherwise undamaged, ripening fruits, unlike most other Drosophila species that attack only decaying or rotten fruits. Recent studies on different insect species showed that several naturally occurring compounds of easy market availability showing deterrent action may be used to supplement mass catches with food traps. Based on these considerations, the aim of the present work was to test the effects of some natural compounds (alone or in the mixture) on the olfactory system of the D. suzukii and the behavioral responses evoked. We measured by electroantennogram (EAG) recordings, the olfactory sensitivity of antennae to increasing concentrations of eugenol, vanillin, menthol, cis‐jasmone; eugenol + vanillin, +menthol, +cis‐jasmone; vanillin + menthol, +cis‐jasmone. In addition, the behavioral responses to the same compounds and mixtures were evaluated. Our electrophysiological results show a dose‐response relationship between the EAG amplitudes and the increasing concentrations of the olfactory compound. The behavioral results show that the number of laid eggs is significantly different between the standard diet and the standard diet + natural compound. These results underline a specificity in the olfactory sensitivity and in the ovipositing behavior of D. suzukii females; also, they could be valuable for the identification of key chemicals aimed at the future development of strategies in the management and control of this harmful insect for crops.
behavior; Drosophila; natural compounds; "push-pull" strategy; olfactory sensitivity
File in questo prodotto:
File Dimensione Formato  
2020_Association between olfactory sensitivity and behavioral responses of D suzukiito naturally occurring volatile compounds_Corda et al., 2020.pdf

Solo gestori archivio

Descrizione: articolo principale
Tipologia: versione editoriale
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11584/291229
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact