Let Ω ⊂ R^N , N ≥ 2, be an open bounded connected set. We consider the fractional weighted eigenvalue problem (−∆)^s u = λρu in Ω with homogeneous Dirichlet boundary condition, where (−∆)^s, s ∈ (0, 1), is the fractional Laplacian operator, λ ∈ R and ρ ∈ L^∞(Ω). We study weak* continuity, convexity and Gateaux differentiability of the map ρ → 1/λ_1(ρ), where λ_1(ρ) is the first positive eigenvalue. Moreover, denoting by G (ρ_0 ) the class of rearrangements of ρ_0 , we prove the existence of a minimizer of λ_1 (ρ) when ρ varies on G (ρ_0 ). Finally, we show that, if Ω is Steiner symmetric, then every minimizer shares the same symmetry.

Steiner symmetry in the minimization of the first eigenvalue of a fractional eigenvalue problem with indefinite weight

Claudia Anedda;Fabrizio Cuccu;Silvia Frassu
2021-01-01

Abstract

Let Ω ⊂ R^N , N ≥ 2, be an open bounded connected set. We consider the fractional weighted eigenvalue problem (−∆)^s u = λρu in Ω with homogeneous Dirichlet boundary condition, where (−∆)^s, s ∈ (0, 1), is the fractional Laplacian operator, λ ∈ R and ρ ∈ L^∞(Ω). We study weak* continuity, convexity and Gateaux differentiability of the map ρ → 1/λ_1(ρ), where λ_1(ρ) is the first positive eigenvalue. Moreover, denoting by G (ρ_0 ) the class of rearrangements of ρ_0 , we prove the existence of a minimizer of λ_1 (ρ) when ρ varies on G (ρ_0 ). Finally, we show that, if Ω is Steiner symmetric, then every minimizer shares the same symmetry.
2021
Fractional Laplacian; Eigenvalue problem; Optimization; Steiner symmetry
File in questo prodotto:
File Dimensione Formato  
steiner-symmetry-in-the-minimization-of-the-first-eigenvalue-of-a-fractional-eigenvalue-problem-with-indefinite-weight.pdf

Solo gestori archivio

Descrizione: Articolo principale
Tipologia: versione editoriale (VoR)
Dimensione 434.04 kB
Formato Adobe PDF
434.04 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/291639
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact