We study a pseudo-differential equation driven by the degenerate fractional p-Laplacian, under Dirichlet type conditions in a smooth domain. First we show that the solution set within the order interval given by a sub-supersolution pair is nonempty, directed, and compact, hence endowed with extremal elements. Then, we prove existence of a smallest positive, a biggest negative and a nodal solution, combining variational methods with truncation techniques.

Extremal constant sign solutions and nodal solutions for the fractional p-Laplacian

Silvia Frassu;Antonio Iannizzotto
2021-01-01

Abstract

We study a pseudo-differential equation driven by the degenerate fractional p-Laplacian, under Dirichlet type conditions in a smooth domain. First we show that the solution set within the order interval given by a sub-supersolution pair is nonempty, directed, and compact, hence endowed with extremal elements. Then, we prove existence of a smallest positive, a biggest negative and a nodal solution, combining variational methods with truncation techniques.
2021
Fractional p-Laplacian; Extremal constant sign solutions; Nodal solutions; Critical point theory
File in questo prodotto:
File Dimensione Formato  
Extremal constant sign solutions and nodal solutions for the fractional p-Laplacian.pdf

Solo gestori archivio

Tipologia: versione editoriale (VoR)
Dimensione 470.68 kB
Formato Adobe PDF
470.68 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
AAM_Extremal constant sign solutions and nodal solutions for the fractional p-Laplacian.pdf

Open Access dal 12/05/2021

Tipologia: versione post-print (AAM)
Dimensione 577.23 kB
Formato Adobe PDF
577.23 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/292078
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact