We study a Dirichlet type problem for an equation involving the fractional Laplacian and a reaction term subject to either subcritical or critical growth conditions, depending on a positive parameter. Applying a critical point result of Bonanno, we prove existence of one or two positive solutions as soon as the parameter lies under an (explicitly determined) value. As an application, we find two positive solutions for a fractional Ambrosetti–Brezis–Cerami problem.

Existence and multiplicity of positive solutions for the fractional Laplacian under subcritical or critical growth

Silvia Frassu;Antonio Iannizzotto
2021-01-01

Abstract

We study a Dirichlet type problem for an equation involving the fractional Laplacian and a reaction term subject to either subcritical or critical growth conditions, depending on a positive parameter. Applying a critical point result of Bonanno, we prove existence of one or two positive solutions as soon as the parameter lies under an (explicitly determined) value. As an application, we find two positive solutions for a fractional Ambrosetti–Brezis–Cerami problem.
2021
Fractional Laplacian; Critical growth; Variational methods
File in questo prodotto:
File Dimensione Formato  
Frassu-Iannizzotto CVEE.pdf

Solo gestori archivio

Tipologia: versione post-print (AAM)
Dimensione 1.84 MB
Formato Adobe PDF
1.84 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/292084
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact