In this paper, we introduce DG3, an end-to-end method for exploiting gesture interaction in user interfaces. The method allows to declaratively model stroke gestures and their sub-parts, generating the training samples for the recognition algorithm. In addition, we extend the algorithms of the $-family for supporting the online (i.e., real-time ) stroke recognition and their parts, as declared in the models. Finally, we show that the method outperforms existing approaches for online recognition and has comparable accuracy with offline methods after a few gesture segments.
DG3: Exploiting Gesture Declarative Models for Sample Generation and Online Recognition
Spano L. D.
2020-01-01
Abstract
In this paper, we introduce DG3, an end-to-end method for exploiting gesture interaction in user interfaces. The method allows to declaratively model stroke gestures and their sub-parts, generating the training samples for the recognition algorithm. In addition, we extend the algorithms of the $-family for supporting the online (i.e., real-time ) stroke recognition and their parts, as declared in the models. Finally, we show that the method outperforms existing approaches for online recognition and has comparable accuracy with offline methods after a few gesture segments.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
eics2020.pdf
Solo gestori archivio
Descrizione: Articolo principale
Tipologia:
versione editoriale (VoR)
Dimensione
2.54 MB
Formato
Adobe PDF
|
2.54 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.