The Design of Experiment (DoE) technique has been used to investigate the photo-electrochemical removal of diuron (DRN) from wastewater. The process is carried out in a photo-electrochemical flow reactor, in which titania nanotubular electrode is irradiated with a simulated solar light. Different operative conditions have been investigated, in a planned 23 full factorial design in which imposed current density, flow rate and initial concentration have been varied at two levels. The removal process of DRN was investigated in terms of specific removal rate (K) and cell voltage (E), which were assumed as objective functions: the results show that the applied current has a paramount effect on both of the objective functions. From the analyses of the intermediates, it appears that the investigated parameters may exert different effects on the distribution of the reaction products: the initial concentration of diuron and the electrode potential seem to play a more important role, in this case.

Design of experiment for the optimization of pesticide removal from wastewater by photo-electrochemical oxidation with tio2 nanotubes

Vacca A.;Mais L.;Mascia M.;Usai E. M.;Palmas S.
2020-01-01

Abstract

The Design of Experiment (DoE) technique has been used to investigate the photo-electrochemical removal of diuron (DRN) from wastewater. The process is carried out in a photo-electrochemical flow reactor, in which titania nanotubular electrode is irradiated with a simulated solar light. Different operative conditions have been investigated, in a planned 23 full factorial design in which imposed current density, flow rate and initial concentration have been varied at two levels. The removal process of DRN was investigated in terms of specific removal rate (K) and cell voltage (E), which were assumed as objective functions: the results show that the applied current has a paramount effect on both of the objective functions. From the analyses of the intermediates, it appears that the investigated parameters may exert different effects on the distribution of the reaction products: the initial concentration of diuron and the electrode potential seem to play a more important role, in this case.
2020
advanced oxidation process; photo-electrochemical degradation; diuron; design of experiments; TiO2 nanotubes
File in questo prodotto:
File Dimensione Formato  
catalysts-10-00512.pdf

accesso aperto

Descrizione: articolo online
Tipologia: versione editoriale (VoR)
Dimensione 4.36 MB
Formato Adobe PDF
4.36 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/294761
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 10
social impact