Abstract: In order to shed light on contamination risks along the ready-to-eat chain of fresh commodities by emerging foodborne pathogens, we investigated the biofilm development in vitro of two Pseudomonas aeruginosa strains on fresh-cut lettuce (Lactuca sativa L. var. Iceberg). The experiment was performed employing a floating bioreactor system where modified atmosphere package conditions were mimicked, and fresh-cut lettuce disks of 2 cm2 were put into contact with a 106 CFU/mL of a phenotypic mucoid P. aeruginosa phenotype (muc+) or a non-mucoid one (muc-). Following a simulated 2-day refrigerated-shelf quantitative Real-Time PCR, designed on a target gene region of the 16S rRNA gene, defined the different muc phenotypes behavior on biofilm in lettuce phyllo-plane. Between the two strains, a development difference of nearly 1.0 log CFU/cm2 occurred, with the muc+ phenotype being the most settled and adherent. This result clearly showed a distinct contamination risk according to P. aeruginosa phenotype and the need to develop real-time, specific, fast, and easy to use detection protocols along with specific sanitation systems for modified atmosphere package ready-toeat commodities.
Pseudomonas aeruginosa as a potential contaminant of packed fresh-cut lettuce in a controlled atmosphere. The role of phenotypes muc+/muc
Alessandra ScanoPrimo
;Germano Orrù
Secondo
;Sara Fais;
2021-01-01
Abstract
Abstract: In order to shed light on contamination risks along the ready-to-eat chain of fresh commodities by emerging foodborne pathogens, we investigated the biofilm development in vitro of two Pseudomonas aeruginosa strains on fresh-cut lettuce (Lactuca sativa L. var. Iceberg). The experiment was performed employing a floating bioreactor system where modified atmosphere package conditions were mimicked, and fresh-cut lettuce disks of 2 cm2 were put into contact with a 106 CFU/mL of a phenotypic mucoid P. aeruginosa phenotype (muc+) or a non-mucoid one (muc-). Following a simulated 2-day refrigerated-shelf quantitative Real-Time PCR, designed on a target gene region of the 16S rRNA gene, defined the different muc phenotypes behavior on biofilm in lettuce phyllo-plane. Between the two strains, a development difference of nearly 1.0 log CFU/cm2 occurred, with the muc+ phenotype being the most settled and adherent. This result clearly showed a distinct contamination risk according to P. aeruginosa phenotype and the need to develop real-time, specific, fast, and easy to use detection protocols along with specific sanitation systems for modified atmosphere package ready-toeat commodities.File | Dimensione | Formato | |
---|---|---|---|
Scano et al., 2021.pdf
accesso aperto
Tipologia:
versione post-print (AAM)
Dimensione
397.51 kB
Formato
Adobe PDF
|
397.51 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.