During a screening for compounds that could act against Mycobacterium tuberculosis, a series of new cellular antiproliferative agents was identified. The most cytotoxic molecules were evaluated against a panel of human cell lines derived from hematological and solid human tumors. In particular, (E)-2-(1H-benzo[d] [1,2,3]triazol-1-yl)-3-(4-methoxyphenyl)acrylonitrile (1) was found to be of a potency comparable to etoposide and greater than 6-mercaptopurine in all cell lines tested. Accordingly, a synthesis of a new series of (E)-2-(5,6-dichloro-1H-benzo[d] [1,2,3]triazol-1-yl)-3-(4-R-phenyl)acrylonitriles was conducted in order to extend the studies of structure-activity relationship (SAR) for this class of molecules. With the aim to evaluate if 3-aryl-2-[1H-benzotriazol-1-yl]acrylonitriles were able to act like tubulin binding agents, the effects on cell cycle distribution of the most active compounds (1, 2a, 3 and 4) were analyzed in K562 cells. A detailed molecular modeling study of the putative binding mode of this series of compounds on tubulin is also reported.
3-Aryl-2-[1H-benzotriazol-1-yl]acrylonitriles: a novel class of potent tubulin inhibitors
La Colla P.;Loddo R.;
2011-01-01
Abstract
During a screening for compounds that could act against Mycobacterium tuberculosis, a series of new cellular antiproliferative agents was identified. The most cytotoxic molecules were evaluated against a panel of human cell lines derived from hematological and solid human tumors. In particular, (E)-2-(1H-benzo[d] [1,2,3]triazol-1-yl)-3-(4-methoxyphenyl)acrylonitrile (1) was found to be of a potency comparable to etoposide and greater than 6-mercaptopurine in all cell lines tested. Accordingly, a synthesis of a new series of (E)-2-(5,6-dichloro-1H-benzo[d] [1,2,3]triazol-1-yl)-3-(4-R-phenyl)acrylonitriles was conducted in order to extend the studies of structure-activity relationship (SAR) for this class of molecules. With the aim to evaluate if 3-aryl-2-[1H-benzotriazol-1-yl]acrylonitriles were able to act like tubulin binding agents, the effects on cell cycle distribution of the most active compounds (1, 2a, 3 and 4) were analyzed in K562 cells. A detailed molecular modeling study of the putative binding mode of this series of compounds on tubulin is also reported.File | Dimensione | Formato | |
---|---|---|---|
4151-4167, 2011.pdf
Solo gestori archivio
Tipologia:
versione editoriale
Dimensione
1.96 MB
Formato
Adobe PDF
|
1.96 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.