here is an attractive Casimir-Lifshitz force between two silica surfaces in a liquid (bromobenze or toluene). We demonstrate that adding an ultrathin (5-50 angstrom) metallic nanocoating to one of the surfaces results in repulsive Casimir-Lifshitz forces above a critical separation. The onset of such quantum levitation comes at decreasing separations as the film thickness decreases. Remarkably, the effect of retardation can turn attraction into repulsion. From that we explain how an ultrathin metallic coating may prevent nanoelectromechanical systems from crashing together.
Ultrathin metallic coatings can induce quantum levitation between nanosurfaces
Parsons D;
2012-01-01
Abstract
here is an attractive Casimir-Lifshitz force between two silica surfaces in a liquid (bromobenze or toluene). We demonstrate that adding an ultrathin (5-50 angstrom) metallic nanocoating to one of the surfaces results in repulsive Casimir-Lifshitz forces above a critical separation. The onset of such quantum levitation comes at decreasing separations as the film thickness decreases. Remarkably, the effect of retardation can turn attraction into repulsion. From that we explain how an ultrathin metallic coating may prevent nanoelectromechanical systems from crashing together.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
CasimirRepulsion_nonpolarThinLayer-BoströmNinhamBrevikPerssonParsonsSernelius-ApplPhysLett-2012.pdf
Solo gestori archivio
Dimensione
762.94 kB
Formato
Adobe PDF
|
762.94 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.