Brain damage related to perinatal asphyxia is the second cause of neuro-disability worldwide. Its incidence was estimated in 2010 as 8.5 cases per 1000 live births worldwide, with no further recent improvement even in more industrialized countries. If so, hypoxic-ischemic encephalopathy is still an issue of global health concern. It is thought that a consistent number of cases may be avoided, and its sequelae may be preventable by a prompt and efficient physical and therapeutic treatment. The lack of early, reliable, and specific biomarkers has up to now hampered a more effective use of hypothermia, which represents the only validated therapy for this condition. The urge to unravel the biological modifications underlying perinatal asphyxia and hypoxic-ischemic encephalopathy needs new diagnostic and therapeutic tools. Metabolomics for its own features is a powerful approach that may help for the identification of specific metabolic profiles related to the pathological mechanism and foreseeable outcome. The metabolomic profiles of animal and human infants exposed to perinatal asphyxia or developing hypoxic-ischemic encephalopathy have so far been investigated by means of 1H nuclear magnetic resonance spectroscopy and mass spectrometry coupled with gas or liquid chromatography, leading to the identification of promising metabolomic signatures. In this work, an extensive review of the relevant literature was performed.

Exploring perinatal asphyxia by metabolomics

Locci E.;Bazzano G.;Demontis R.;Fanos V.;Chighine A.
2020-01-01

Abstract

Brain damage related to perinatal asphyxia is the second cause of neuro-disability worldwide. Its incidence was estimated in 2010 as 8.5 cases per 1000 live births worldwide, with no further recent improvement even in more industrialized countries. If so, hypoxic-ischemic encephalopathy is still an issue of global health concern. It is thought that a consistent number of cases may be avoided, and its sequelae may be preventable by a prompt and efficient physical and therapeutic treatment. The lack of early, reliable, and specific biomarkers has up to now hampered a more effective use of hypothermia, which represents the only validated therapy for this condition. The urge to unravel the biological modifications underlying perinatal asphyxia and hypoxic-ischemic encephalopathy needs new diagnostic and therapeutic tools. Metabolomics for its own features is a powerful approach that may help for the identification of specific metabolic profiles related to the pathological mechanism and foreseeable outcome. The metabolomic profiles of animal and human infants exposed to perinatal asphyxia or developing hypoxic-ischemic encephalopathy have so far been investigated by means of 1H nuclear magnetic resonance spectroscopy and mass spectrometry coupled with gas or liquid chromatography, leading to the identification of promising metabolomic signatures. In this work, an extensive review of the relevant literature was performed.
2020
1H NMR; GC-MS; LC-MS; Hypoxic-ischemic encephalopathy; Metabolomics; Perinatal asphyxia
File in questo prodotto:
File Dimensione Formato  
metabolites-10-00141.pdf

accesso aperto

Tipologia: versione editoriale
Dimensione 266.95 kB
Formato Adobe PDF
266.95 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/298537
Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 26
social impact