The ability of many anti-microbial peptides (AMPs) to modulate the host immune response has highlighted their possible therapeutic use to reduce uncontrolled inflammation during chronic infections. In the present study, we examined the anti-inflammatory potential of the semi-synthetic peptide lin-SB056-1 and its dendrimeric derivative (lin-SB056-1)2-K, which were previously found to have anti-microbial activity against Pseudomonas aeruginosa in in vivo-like models mimicking the challenging environment of chronically infected lungs (i.e., artificial sputum medium and 3-D lung mucosa model). The dendrimeric derivative exerted a stronger anti-inflammatory activity than its monomeric counterpart towards lung epithelial- and macrophage-cell lines stimulated with P. aeruginosa lipopolysaccharide (LPS), based on a marked decrease (up to 80%) in the LPS-induced production of different pro-inflammatory cytokines (i.e., IL-1β, IL-6 and IL-8). Accordingly, (lin-SB056-1)2-K exhibited a stronger LPS-binding affinity than its monomeric counterpart, thereby suggesting a role of peptide/LPS neutralizing interactions in the observed anti-inflammatory effect. Along with the anti-bacterial and anti-biofilm properties, the anti-inflammatory activity of (lin-SB056-1)2-K broadens its therapeutic potential in the context of chronic (biofilm-associated) infections.

The anti-microbial peptide (Lin-SB056-1)2-K reduces pro-inflammatory cytokine release through interaction with Pseudomonas aeruginosa lipopolysaccharide

Andrea C. Rinaldi;Enrico Sanjust;
2020-01-01

Abstract

The ability of many anti-microbial peptides (AMPs) to modulate the host immune response has highlighted their possible therapeutic use to reduce uncontrolled inflammation during chronic infections. In the present study, we examined the anti-inflammatory potential of the semi-synthetic peptide lin-SB056-1 and its dendrimeric derivative (lin-SB056-1)2-K, which were previously found to have anti-microbial activity against Pseudomonas aeruginosa in in vivo-like models mimicking the challenging environment of chronically infected lungs (i.e., artificial sputum medium and 3-D lung mucosa model). The dendrimeric derivative exerted a stronger anti-inflammatory activity than its monomeric counterpart towards lung epithelial- and macrophage-cell lines stimulated with P. aeruginosa lipopolysaccharide (LPS), based on a marked decrease (up to 80%) in the LPS-induced production of different pro-inflammatory cytokines (i.e., IL-1β, IL-6 and IL-8). Accordingly, (lin-SB056-1)2-K exhibited a stronger LPS-binding affinity than its monomeric counterpart, thereby suggesting a role of peptide/LPS neutralizing interactions in the observed anti-inflammatory effect. Along with the anti-bacterial and anti-biofilm properties, the anti-inflammatory activity of (lin-SB056-1)2-K broadens its therapeutic potential in the context of chronic (biofilm-associated) infections.
2020
anti-microbial peptide; dendrimeric peptide; Pseudomonas aeruginosa; LPS; anti-inflammatory activity
File in questo prodotto:
File Dimensione Formato  
antibiotics-09-00585.pdf

accesso aperto

Tipologia: versione editoriale (VoR)
Dimensione 1.44 MB
Formato Adobe PDF
1.44 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/298961
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact