We discuss an approach of robust fitting on nonlinear regression models, both in a frequentist and a Bayesian approach, which can be employed to model and predict the contagion dynamics of COVID-19 in Italy. The focus is on the analysis of epidemic data using robust dose-response curves, but the functionality is applicable to arbitrary nonlinear regression models.

Robust inference for nonlinear regression models from the Tsallis score: application to COVID-19 contagion in Italy

Mameli, Valentina;Musio, Monica;Racugno, Walter;Ruli, Erlis;Ventura, Laura
2020-01-01

Abstract

We discuss an approach of robust fitting on nonlinear regression models, both in a frequentist and a Bayesian approach, which can be employed to model and predict the contagion dynamics of COVID-19 in Italy. The focus is on the analysis of epidemic data using robust dose-response curves, but the functionality is applicable to arbitrary nonlinear regression models.
2020
Influence function; Model misspecification; Nonlinear regression; Reference prior; SARS CoV‐2 disease; Scoring rules
File in questo prodotto:
File Dimensione Formato  
sta4.309.pdf

Solo gestori archivio

Tipologia: versione post-print (AAM)
Dimensione 1.31 MB
Formato Adobe PDF
1.31 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/298997
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact