Even though sub-micron and nano-sized iron particles generally display single or polycrystalline structures, a growing interest has also been dedicated to the class of amorphous ones, whose absence of a crystal structure is capable of modifying their physical properties. Among the several routes so far described to prepare amorphous iron particles, we report here about the crystallization of those prepared by chemical reduction of Fe3+ ions using NaBH4, with sizes ranging between 80 and 200 nm and showing a high stability against oxidation. Their crystallization was investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD), and in situ heating transmission electron microscopy (TEM). The latter technique was performed by the combined use of electron diffraction of a selected sample area, and bright and dark field TEM imaging, and allowed determining that the crystallization turns the starting amorphous particles into polycrystalline α-Fe ones. Also, under the high vacuum of the TEM column, the crystallization temperature of the particles shifted to 550°C from the 465°C, previously observed by DSC and XRD under 105 Pa of Ar. This indicates the pivotal role of the external pressure in influencing the starting point of phase transition. Conversely, upon both the DSC/XRD pressure and the TEM vacuum conditions, the mean size of the crystal domains increases as a consequence of further thermal increase, even if with some pressure-related differences.

In situ TEM crystallization of amorphous iron particles

Falqui A.;Loche D.;
2020-01-01

Abstract

Even though sub-micron and nano-sized iron particles generally display single or polycrystalline structures, a growing interest has also been dedicated to the class of amorphous ones, whose absence of a crystal structure is capable of modifying their physical properties. Among the several routes so far described to prepare amorphous iron particles, we report here about the crystallization of those prepared by chemical reduction of Fe3+ ions using NaBH4, with sizes ranging between 80 and 200 nm and showing a high stability against oxidation. Their crystallization was investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD), and in situ heating transmission electron microscopy (TEM). The latter technique was performed by the combined use of electron diffraction of a selected sample area, and bright and dark field TEM imaging, and allowed determining that the crystallization turns the starting amorphous particles into polycrystalline α-Fe ones. Also, under the high vacuum of the TEM column, the crystallization temperature of the particles shifted to 550°C from the 465°C, previously observed by DSC and XRD under 105 Pa of Ar. This indicates the pivotal role of the external pressure in influencing the starting point of phase transition. Conversely, upon both the DSC/XRD pressure and the TEM vacuum conditions, the mean size of the crystal domains increases as a consequence of further thermal increase, even if with some pressure-related differences.
2020
in situ heating TEM; particles; amorphous-crystal phase transition; amorphous iron
File in questo prodotto:
File Dimensione Formato  
crystals-10-00041.pdf

accesso aperto

Descrizione: articolo online
Tipologia: versione editoriale (VoR)
Dimensione 3.19 MB
Formato Adobe PDF
3.19 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/301015
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 10
social impact