Blue-emitting nitrogen-doped carbon dots (CDN) produced by a solvent-free method have been successfully incorporated into silica (SiO2) through a sol-gel procedure. By exploiting the co-gelation of the dispersed carbon dots and of the silica matrix, homogeneous distribution of the carbon dots was obtained throughout the matrix. The CDN-SiO2 composites in the form of xero-, cryo-, and aerogels featuring different porous textures were produced by exploiting different gel drying strategies. The most critical parameters and the material features associated to the different synthesis were investigated by transmission electron microscopy, thermal analysis, Mid-infrared spectroscopy, N-2 physisorption isotherms and time-resolved spectrofluorimetry. The emissive properties of CDN-SiO2 composites in the form of aero-, cryo- and xerogel were studied. The spectral properties and the efficiency of the emission change in the CDN-SiO2 composites pointed at the effect of CD loading and porous texture of xerogels. Our investigation expands the exploitation of functional carbon dots through the production of fluorescent solid-state composites with tunable porosities.

How porosity affects the emission of fluorescent carbon dot-silica porous composites

Carbonaro, Carlo Maria;Thakkar, Swapneel Vijay;Ludmerczki, Róbert;Olla, Chiara;Pinna, Andrea;Loche, Danilo;Malfatti, Luca;Cesare Marincola, Flaminia;Casula, Maria Francesca
2020-01-01

Abstract

Blue-emitting nitrogen-doped carbon dots (CDN) produced by a solvent-free method have been successfully incorporated into silica (SiO2) through a sol-gel procedure. By exploiting the co-gelation of the dispersed carbon dots and of the silica matrix, homogeneous distribution of the carbon dots was obtained throughout the matrix. The CDN-SiO2 composites in the form of xero-, cryo-, and aerogels featuring different porous textures were produced by exploiting different gel drying strategies. The most critical parameters and the material features associated to the different synthesis were investigated by transmission electron microscopy, thermal analysis, Mid-infrared spectroscopy, N-2 physisorption isotherms and time-resolved spectrofluorimetry. The emissive properties of CDN-SiO2 composites in the form of aero-, cryo- and xerogel were studied. The spectral properties and the efficiency of the emission change in the CDN-SiO2 composites pointed at the effect of CD loading and porous texture of xerogels. Our investigation expands the exploitation of functional carbon dots through the production of fluorescent solid-state composites with tunable porosities.
2020
Carbon dot; Aerogel; Composite; Cryogel; Photoluminescence
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S138718112030305X-main (1).pdf

Solo gestori archivio

Descrizione: https://doi.org/10.1016/j.micromeso.2020.110302
Tipologia: versione editoriale
Dimensione 2.78 MB
Formato Adobe PDF
2.78 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/301034
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact