The recreational use of opioid drugs is a global threat to public health and safety. In particular, an epidemic of opioid overdose fatalities is being driven by illicitly manufactured fentanyl, while novel synthetic opioids (NSOs) are appearing on recreational drug markets as standalone products, adulterants in heroin, or ingredients in counterfeit drug preparations. Trans-3,4-dichloro-N-[2-(dimethylamino)cyclohexyl]-N-methylbenzamide (U-47700) is a prime example of a non-fentanyl NSO that is associated with numerous intoxications and fatalities. Here, we review the medicinal chemistry, preclinical pharmacology, clandestine availability, methods for detection, and forensic toxicology of U-47700 and its analogs. An up-to-date summary of the human cases involving U-47700 intoxication and death are described. The evidence demonstrates that U-47700 is a potent mu-opioid receptor agonist, which poses a serious risk for overdosing and death. However, most analogs of U-47700 appear to be less potent and have been detected infrequently in forensic specimens. U-47700 represents a classic example of how chemical entities from the medicinal chemistry or patent literature can be diverted for use in recreational drug markets. Lessons learned from the experiences with U-47700 can inform scientists, clinicians, and policymakers who are involved with responding to the spread and impact of NSOs.
U-47700 and its analogs: non-fentanyl synthetic opioids impacting the recreational drug market
Graziella Tocco;
2020-01-01
Abstract
The recreational use of opioid drugs is a global threat to public health and safety. In particular, an epidemic of opioid overdose fatalities is being driven by illicitly manufactured fentanyl, while novel synthetic opioids (NSOs) are appearing on recreational drug markets as standalone products, adulterants in heroin, or ingredients in counterfeit drug preparations. Trans-3,4-dichloro-N-[2-(dimethylamino)cyclohexyl]-N-methylbenzamide (U-47700) is a prime example of a non-fentanyl NSO that is associated with numerous intoxications and fatalities. Here, we review the medicinal chemistry, preclinical pharmacology, clandestine availability, methods for detection, and forensic toxicology of U-47700 and its analogs. An up-to-date summary of the human cases involving U-47700 intoxication and death are described. The evidence demonstrates that U-47700 is a potent mu-opioid receptor agonist, which poses a serious risk for overdosing and death. However, most analogs of U-47700 appear to be less potent and have been detected infrequently in forensic specimens. U-47700 represents a classic example of how chemical entities from the medicinal chemistry or patent literature can be diverted for use in recreational drug markets. Lessons learned from the experiences with U-47700 can inform scientists, clinicians, and policymakers who are involved with responding to the spread and impact of NSOs.File | Dimensione | Formato | |
---|---|---|---|
brainsci-10-00895-v2.pdf
accesso aperto
Tipologia:
versione editoriale (VoR)
Dimensione
1.37 MB
Formato
Adobe PDF
|
1.37 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.