While variations in sedimentary organic matter (OM) quantity, biochemical composition and nutritional quality as well as in meiofaunal abundance and assemblage composition at the macro- and mesoscale are relatively well known, information about variations at the microscale is much scarcer. To shed some light on this issue, we tested the null hypothesis by which abundance and composition of the meiofaunal assemblages, and the quantity, biochemical composition and nutritional quality of sedimentary organic matter in coastal shallow environments do not vary within a frame of 1 m2. No significant variation within the frame emerged for OM quantity, nutritional quality, biochemical composition and the abundance of meiofaunal assemblages. On the other hand, the composition of meiofaunal assemblages varied significantly within the frame and exhibited a clear segregation of assemblages farther to the shore, as a likely result of local micro-hydrodynamic conditions. Spatial autocorrelation analysis revealed that lipid and protein sedimentary contents had a random distribution, whereas carbohydrate and biopolymeric C contents and meiofaunal total abundance were characterized by a patchy distribution, with discrete peaks within the sub-frame squares (ca. 0.1 m2). Phytopigments showed a spatial positive autocorrelation distribution, following the micro-hydrodynamic pattern, with patches larger than the sub-frame square, but smaller than the entire one (1 m2). Overall, our results suggest that, within 1 m2 of subtidal sandy sediments, three replicates could be sufficient to assess correctly OM attributes and the abundance of meiofauna, but could be possibly inadequate for assessing meiofaunal assemblages’ composition at a finer scale (<1 m2).

Small-scale distribution of metazoan meiofauna and sedimentary organic matter in subtidal sandy sediments (Mediterranean Sea)

Moccia D.;Cau A.;Pusceddu A.
2019-01-01

Abstract

While variations in sedimentary organic matter (OM) quantity, biochemical composition and nutritional quality as well as in meiofaunal abundance and assemblage composition at the macro- and mesoscale are relatively well known, information about variations at the microscale is much scarcer. To shed some light on this issue, we tested the null hypothesis by which abundance and composition of the meiofaunal assemblages, and the quantity, biochemical composition and nutritional quality of sedimentary organic matter in coastal shallow environments do not vary within a frame of 1 m2. No significant variation within the frame emerged for OM quantity, nutritional quality, biochemical composition and the abundance of meiofaunal assemblages. On the other hand, the composition of meiofaunal assemblages varied significantly within the frame and exhibited a clear segregation of assemblages farther to the shore, as a likely result of local micro-hydrodynamic conditions. Spatial autocorrelation analysis revealed that lipid and protein sedimentary contents had a random distribution, whereas carbohydrate and biopolymeric C contents and meiofaunal total abundance were characterized by a patchy distribution, with discrete peaks within the sub-frame squares (ca. 0.1 m2). Phytopigments showed a spatial positive autocorrelation distribution, following the micro-hydrodynamic pattern, with patches larger than the sub-frame square, but smaller than the entire one (1 m2). Overall, our results suggest that, within 1 m2 of subtidal sandy sediments, three replicates could be sufficient to assess correctly OM attributes and the abundance of meiofauna, but could be possibly inadequate for assessing meiofaunal assemblages’ composition at a finer scale (<1 m2).
2019
biochemical composition; coastal content; nutritional quality; sampling size; spatial variability; trophic status
File in questo prodotto:
File Dimensione Formato  
Moccia et a al AIOL 2019.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: versione editoriale
Dimensione 533.53 kB
Formato Adobe PDF
533.53 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/302069
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact