The electroencephalogram (EEG) has been proven to be a promising technique for personal identification and verification. Recently, the aperiodic component of the power spectrum was shown to outperform other commonly used EEG features. Beyond that, EEG characteristics may capture relevant features related to emotional states. In this work, we aim to understand if the aperiodic component of the power spectrum, as shown for resting-state experimental paradigms, is able to capture EEG-based subject-specific features in a naturalistic stimuli scenario. In order to answer this question, we performed an analysis using two freely available datasets containing EEG recordings from participants during viewing of film clips that aim to trigger different emotional states. Our study confirms that the aperiodic components of the power spectrum, as evaluated in terms of offset and exponent parameters, are able to detect subject-specific features extracted from the scalp EEG. In particular, our results show that the performance of the system was significantly higher for the film clip scenario if compared with resting-state, thus suggesting that under naturalistic stimuli it is even easier to identify a subject. As a consequence, we suggest a paradigm shift, from task-based or resting-state to naturalistic stimuli, when assessing the performance of EEG-based biometric systems.

Eeg fingerprints under naturalistic viewing using a portable device

Fraschini M.
;
Demuru M.;Didaci L.;Barberini L.
Ultimo
2020-01-01

Abstract

The electroencephalogram (EEG) has been proven to be a promising technique for personal identification and verification. Recently, the aperiodic component of the power spectrum was shown to outperform other commonly used EEG features. Beyond that, EEG characteristics may capture relevant features related to emotional states. In this work, we aim to understand if the aperiodic component of the power spectrum, as shown for resting-state experimental paradigms, is able to capture EEG-based subject-specific features in a naturalistic stimuli scenario. In order to answer this question, we performed an analysis using two freely available datasets containing EEG recordings from participants during viewing of film clips that aim to trigger different emotional states. Our study confirms that the aperiodic components of the power spectrum, as evaluated in terms of offset and exponent parameters, are able to detect subject-specific features extracted from the scalp EEG. In particular, our results show that the performance of the system was significantly higher for the film clip scenario if compared with resting-state, thus suggesting that under naturalistic stimuli it is even easier to identify a subject. As a consequence, we suggest a paradigm shift, from task-based or resting-state to naturalistic stimuli, when assessing the performance of EEG-based biometric systems.
2020
EEG; fingerprints; emotion; spectral analysis; naturalistic stimuli
File in questo prodotto:
File Dimensione Formato  
sensors-20-06565 (2).pdf

accesso aperto

Tipologia: versione editoriale
Dimensione 1.13 MB
Formato Adobe PDF
1.13 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/305503
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact