The introduction of 0.5–1.0 wt.% graphite to the powders prepared by Self-propagating High-temperature Synthesis (SHS) is found to be highly beneficial for the removal of oxide impurities (from 2.7-8.8 wt.% to 0.2–0.5 wt.%) during spark plasma sintering (1950°C/20 min, 20 MPa) of (Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2 and (Hf0.2Mo0.2Ta0.2Zr0.2Ti0.2)B2 ceramics. Concurrently, the consolidation level achieved is enhanced from about 92.5% and 88%, respectively, to values exceeding 97%. While a further increase of graphite slightly improves samples densification, final products become progressively richer of the unreacted carbon. It is assumed that graphite plays a double role during SPS, e.g. not only as a reactant during the carbothermal reduction of oxides contaminant, but also as lubricating agent for the powder particles. The latter phenomenon is likely the main responsible for the densification improvement when 3 wt.% or larger amounts of additive are used. Another positive effect is the crystallite size refinement of the high-entropy phases with the progressive abatement of oxides, to confirm that their presence promotes grain coarsening during the sintering process.

Ultra high temperature high-entropy borides: effect of graphite addition on oxides removal and densification behaviour

Simone Barbarossa;Roberto Orrù
;
Roberta Licheri;Giacomo Cao
2021-01-01

Abstract

The introduction of 0.5–1.0 wt.% graphite to the powders prepared by Self-propagating High-temperature Synthesis (SHS) is found to be highly beneficial for the removal of oxide impurities (from 2.7-8.8 wt.% to 0.2–0.5 wt.%) during spark plasma sintering (1950°C/20 min, 20 MPa) of (Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2 and (Hf0.2Mo0.2Ta0.2Zr0.2Ti0.2)B2 ceramics. Concurrently, the consolidation level achieved is enhanced from about 92.5% and 88%, respectively, to values exceeding 97%. While a further increase of graphite slightly improves samples densification, final products become progressively richer of the unreacted carbon. It is assumed that graphite plays a double role during SPS, e.g. not only as a reactant during the carbothermal reduction of oxides contaminant, but also as lubricating agent for the powder particles. The latter phenomenon is likely the main responsible for the densification improvement when 3 wt.% or larger amounts of additive are used. Another positive effect is the crystallite size refinement of the high-entropy phases with the progressive abatement of oxides, to confirm that their presence promotes grain coarsening during the sintering process.
2021
High-entropy metal borides; Oxide impurities; Self-propagating high-temperature synthesis; Spark plasma sintering; X-ray diffraction
File in questo prodotto:
File Dimensione Formato  
Barbarossa et al 2021_CERI.pdf

Solo gestori archivio

Descrizione: articolo online
Tipologia: versione editoriale
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Submitted_paper_Barbarossa_et_al_CERI_2021.pdf

accesso aperto

Tipologia: versione pre-print
Dimensione 2.06 MB
Formato Adobe PDF
2.06 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/306884
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 22
social impact