The adoption of prolonged sitting posture,which is a condition commonly encountered in several working tasks,is known to induce a wide range of negative effects,including discomfort,which has been recognized as an early predictor for musculoskeletal disorders (particularly low back pain).In this regard,the continuous monitoring of worker’s psychophysical state while sitting for long periods of time, may result useful in to preventing and managing potentially risky situations and to promote ergonomics and macroergonomics interventions,aimed to better organize work shifts and workplaces.The aim of this dissertation is to provide and test the reliability of a set of monitoring parameters,based on the use of quantitative information derived from body-seat contact pressure sensors.In particular, he study was focused on the assessment of trunk postural sway (the small oscillations resulting from the stabilization control system) and the number of In Chair Movements (ICM) or postural shifts performed while sitting, proven as a reliable tool for discomfort prediction. This thesis is articulated into four experimental campaigns.The first is a pilot study which aimed to define the most reliable algorithm and the set of parameters useful to assess the performed postural shifts or In chair Movements (ICM), which result useful to characterize postural strategies in the long term-monitoring. In this regard, a pilot study was conducted in which two different algorithms for the ICM computing were tested, based on different parameters and having different thresholds. The chosen algorithm was used, together with trunk sway parameters, to evaluate postural strategies in the other three experiments of this thesis. The second and the third studies evaluated sitting postural strategies among bus drivers during regular, long-term work shifts performed on urban and extra-urban routes. The results, in this case, showed that, all drivers reported a constant increase in perceived discomfort levels and a correspondent increase in trunk sway and overall number of ICM performed. This may indicate the adoption of specific strategies in order to cope with discomfort onset, a fatigue-induced alteration of postural features, or both simultaneously. However, it was interesting to observe differences in ICM vs trunk sway trend considering the single point-to-point route in the case of urban drivers. This difference between may indicate that these parameters refer to different aspects of sitting postural strategies: ICM may be more related to discomfort while sway may be more representative of task-induced fatigue. Trunk sway monitoring, as well as the count of ICM performed by bus drivers may thus be a useful tool in detecting postural behaviors potentially associated with deteriorating performance and onset of discomfort. Finally, the last experiment aimed to characterize modifications in sitting behavior, in terms of trunk sway and ICM among office workers during actual shifts. Surprisingly, results showed a decreasing trend in trunk sway parameters and ICM performed over time, with significant modifications in sitting posture in terms of trunk flexion-extension. Subjects were also stratified basing on their working behavior (staying seated or making short breaks during the trial) and significant differences were identified among these two groups in terms of postural sway and perceived discomfort. This may indicate that the adoption of specific working strategies can significantly influence sitting behavior and discomfort onset. In conclusion, the trunk sway monitoring and the ICM assessment in actual working environments may represent a useful tool to detect specific postural behaviors potentially associated with deteriorating performance and onset of discomfort, both among professional drivers and office workers.They might effectively support the evaluation of specific working strategies,as well as the set-up of macroergonomics interventions.

An experimental approach for the characterization of prolonged sitting postures using pressure sensitive mats

ARIPPA, FEDERICO
2021-02-05

Abstract

The adoption of prolonged sitting posture,which is a condition commonly encountered in several working tasks,is known to induce a wide range of negative effects,including discomfort,which has been recognized as an early predictor for musculoskeletal disorders (particularly low back pain).In this regard,the continuous monitoring of worker’s psychophysical state while sitting for long periods of time, may result useful in to preventing and managing potentially risky situations and to promote ergonomics and macroergonomics interventions,aimed to better organize work shifts and workplaces.The aim of this dissertation is to provide and test the reliability of a set of monitoring parameters,based on the use of quantitative information derived from body-seat contact pressure sensors.In particular, he study was focused on the assessment of trunk postural sway (the small oscillations resulting from the stabilization control system) and the number of In Chair Movements (ICM) or postural shifts performed while sitting, proven as a reliable tool for discomfort prediction. This thesis is articulated into four experimental campaigns.The first is a pilot study which aimed to define the most reliable algorithm and the set of parameters useful to assess the performed postural shifts or In chair Movements (ICM), which result useful to characterize postural strategies in the long term-monitoring. In this regard, a pilot study was conducted in which two different algorithms for the ICM computing were tested, based on different parameters and having different thresholds. The chosen algorithm was used, together with trunk sway parameters, to evaluate postural strategies in the other three experiments of this thesis. The second and the third studies evaluated sitting postural strategies among bus drivers during regular, long-term work shifts performed on urban and extra-urban routes. The results, in this case, showed that, all drivers reported a constant increase in perceived discomfort levels and a correspondent increase in trunk sway and overall number of ICM performed. This may indicate the adoption of specific strategies in order to cope with discomfort onset, a fatigue-induced alteration of postural features, or both simultaneously. However, it was interesting to observe differences in ICM vs trunk sway trend considering the single point-to-point route in the case of urban drivers. This difference between may indicate that these parameters refer to different aspects of sitting postural strategies: ICM may be more related to discomfort while sway may be more representative of task-induced fatigue. Trunk sway monitoring, as well as the count of ICM performed by bus drivers may thus be a useful tool in detecting postural behaviors potentially associated with deteriorating performance and onset of discomfort. Finally, the last experiment aimed to characterize modifications in sitting behavior, in terms of trunk sway and ICM among office workers during actual shifts. Surprisingly, results showed a decreasing trend in trunk sway parameters and ICM performed over time, with significant modifications in sitting posture in terms of trunk flexion-extension. Subjects were also stratified basing on their working behavior (staying seated or making short breaks during the trial) and significant differences were identified among these two groups in terms of postural sway and perceived discomfort. This may indicate that the adoption of specific working strategies can significantly influence sitting behavior and discomfort onset. In conclusion, the trunk sway monitoring and the ICM assessment in actual working environments may represent a useful tool to detect specific postural behaviors potentially associated with deteriorating performance and onset of discomfort, both among professional drivers and office workers.They might effectively support the evaluation of specific working strategies,as well as the set-up of macroergonomics interventions.
5-feb-2021
File in questo prodotto:
File Dimensione Formato  
PhD_Thesis_Arippa.pdf

accesso aperto

Descrizione: An experimental approach for the characterization of prolonged sitting postures using pressure sensitive mats
Tipologia: Tesi di dottorato
Dimensione 21.27 MB
Formato Adobe PDF
21.27 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/307021
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact