Within the lattice dynamics formulation, we present an exact solution for anti-plane surface waves in a square lattice strip with a surface row of material particles of two types separated by a linear interface. The considered problem is a discrete analog of an elastic half-space with surface stresses modelled through the simplified Gurtin–Murdoch model, where we have an interfacial line separating areas with different surface elastic properties. The main attention is paid to the transmittance and the reflectance of a wave across the interface. The presented results shed a light on the influence on surface waves of surface inhomogeneity in surface elastic properties such as grain and subgrain boundaries.

Wave transmission across surface interfaces in lattice structures

Eremeyev V. A.
2019-01-01

Abstract

Within the lattice dynamics formulation, we present an exact solution for anti-plane surface waves in a square lattice strip with a surface row of material particles of two types separated by a linear interface. The considered problem is a discrete analog of an elastic half-space with surface stresses modelled through the simplified Gurtin–Murdoch model, where we have an interfacial line separating areas with different surface elastic properties. The main attention is paid to the transmittance and the reflectance of a wave across the interface. The presented results shed a light on the influence on surface waves of surface inhomogeneity in surface elastic properties such as grain and subgrain boundaries.
2019
Anti-plane shear
Lattice dynamics
Surface elasticity
Surface interface
Surface waves
File in questo prodotto:
File Dimensione Formato  
SharmaEremeyev_IJES2019.pdf

accesso aperto

Tipologia: versione editoriale (VoR)
Dimensione 3.09 MB
Formato Adobe PDF
3.09 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/307196
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 24
social impact