As at the nanoscale the surface-to-volume ratio may be comparable with any characteristic length, while the material properties may essentially depend on surface/interface energy properties. In order to get effective material properties at the nanoscale, one can use various generalized models of continuum. In particular, within the framework of continuum mechanics, the surface elasticity is applied to the modelling of surface-related phenomena. In this paper, we derive an expression for the effective bending stiffness of a laminate plate, considering the Steigmann–Ogden surface elasticity. To this end, we consider plane bending deformations and utilize the through-the-thickness integration procedure. As a result, the calculated elastic bending stiffness depends on lamina thickness and on bulk and surface elastic moduli. The obtained expression could be useful for the description of the bending of multilayered thin films.

On effective bending stiffness of a laminate nanoplate considering steigmann–ogden surface elasticity

Eremeyev V. A.
;
2020-01-01

Abstract

As at the nanoscale the surface-to-volume ratio may be comparable with any characteristic length, while the material properties may essentially depend on surface/interface energy properties. In order to get effective material properties at the nanoscale, one can use various generalized models of continuum. In particular, within the framework of continuum mechanics, the surface elasticity is applied to the modelling of surface-related phenomena. In this paper, we derive an expression for the effective bending stiffness of a laminate plate, considering the Steigmann–Ogden surface elasticity. To this end, we consider plane bending deformations and utilize the through-the-thickness integration procedure. As a result, the calculated elastic bending stiffness depends on lamina thickness and on bulk and surface elastic moduli. The obtained expression could be useful for the description of the bending of multilayered thin films.
2020
bending stiffness; laminate plate; surface elasticity; Steigmann–Ogden model; effective properties
File in questo prodotto:
File Dimensione Formato  
EremeyevWiczenbach_applsci2020.pdf

accesso aperto

Descrizione: articolo online
Tipologia: versione editoriale (VoR)
Dimensione 1.32 MB
Formato Adobe PDF
1.32 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/307229
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 10
social impact