In this paper we propose a dual ascent heuristic for solving the linear relaxation of the generalized set partitioning problem with convexity constraints, which often models the master problem of a column generation approach. The generalized set partitioning problem contains at the same time set covering, set packing and set partitioning constraints. The proposed dual ascent heuristic is based on a reformulation and it uses Lagrangian relaxation and subgradient method. It is inspired by the dual ascent procedure already proposed in literature, but it is able to deal with right hand side greater than one, together with under and over coverage. To prove its validity, it has been applied to the minimum sum coloring problem, the multi-activity tour scheduling problem, and some newly generated instances. The reported computational results show the effectiveness of the proposed method.

A dual ascent heuristic for obtaining a lower bound of the generalized set partitioning problem with convexity constraints

Wolfler Calvo R.;
2019-01-01

Abstract

In this paper we propose a dual ascent heuristic for solving the linear relaxation of the generalized set partitioning problem with convexity constraints, which often models the master problem of a column generation approach. The generalized set partitioning problem contains at the same time set covering, set packing and set partitioning constraints. The proposed dual ascent heuristic is based on a reformulation and it uses Lagrangian relaxation and subgradient method. It is inspired by the dual ascent procedure already proposed in literature, but it is able to deal with right hand side greater than one, together with under and over coverage. To prove its validity, it has been applied to the minimum sum coloring problem, the multi-activity tour scheduling problem, and some newly generated instances. The reported computational results show the effectiveness of the proposed method.
2019
Dual ascent heuristic; Generalized set partitioning; Lagrangian relaxation; Subgradient method
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1572528617302682-main.pdf

Solo gestori archivio

Tipologia: versione editoriale (VoR)
Dimensione 1.33 MB
Formato Adobe PDF
1.33 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/309119
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact