In this paper, the use of Fast Falling Weight Deflectometer (Fast-FWD) is analyzed as a non-destructive and quick test procedure to evaluate the efficiency of short-span bridges. The FastFWD is an instrument that can produce a broadband dynamic force up to an impact value of 120 KN: The impact is constant and replicable, providing accurate action measures of bridge stiffness in a truly short period (30 ms). In this paper, a single-span reinforced concrete bridge is investigated, using the Fast-FWD. The considered bridge, approximately 12.0 m long and 15.5 m wide, was in critical condition. The bridge is in a suburban principal road near to the City of Cagliari in Sardinia (Italy), with an Annual Average Daily Traffic of 13,500 vehicles/day, and was suddenly closed, creating serious problems for urban mobility. In these conditions, the investigation through other standard techniques is time-consuming and labor intensive. For this reason, it is important to introduce methods that can be rapid, accurate and cost-efficient. In this paper, bridge stiffness values obtained during the in situ experimental campaign were compared with finite element models values. The Fast-FWD has the potential to provide engineering information that can help us to better understand bridge condition, in a rapid and cost-effective procedure.
Fast falling weight deflectometer method for condition assessment of rc bridges
Coni M.;Mistretta F.;Stochino F.;Rombi J.;Sassu M.;Puppio M. L.
2021-01-01
Abstract
In this paper, the use of Fast Falling Weight Deflectometer (Fast-FWD) is analyzed as a non-destructive and quick test procedure to evaluate the efficiency of short-span bridges. The FastFWD is an instrument that can produce a broadband dynamic force up to an impact value of 120 KN: The impact is constant and replicable, providing accurate action measures of bridge stiffness in a truly short period (30 ms). In this paper, a single-span reinforced concrete bridge is investigated, using the Fast-FWD. The considered bridge, approximately 12.0 m long and 15.5 m wide, was in critical condition. The bridge is in a suburban principal road near to the City of Cagliari in Sardinia (Italy), with an Annual Average Daily Traffic of 13,500 vehicles/day, and was suddenly closed, creating serious problems for urban mobility. In these conditions, the investigation through other standard techniques is time-consuming and labor intensive. For this reason, it is important to introduce methods that can be rapid, accurate and cost-efficient. In this paper, bridge stiffness values obtained during the in situ experimental campaign were compared with finite element models values. The Fast-FWD has the potential to provide engineering information that can help us to better understand bridge condition, in a rapid and cost-effective procedure.File | Dimensione | Formato | |
---|---|---|---|
applsci-11-01743-v2.pdf
accesso aperto
Descrizione: Articolo
Tipologia:
versione editoriale (VoR)
Dimensione
8.41 MB
Formato
Adobe PDF
|
8.41 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.