The integration of magneto-electric and spintronic sensors to flexible electronics presents a huge potential for advancing flexible and wearable technologies. Magnetic nanowires are core components for building such devices. Therefore, realizing flexible magnetic nanowires with engineered magneto-elastic properties is key to flexible spintronic circuits, as well as creating unique pathways to explore complex flexible spintronic, magnonic, and magneto-plasmonic devices. Here, we demonstrate highly resilient flexible ferromagnetic nanowires on transparent flexible substrates for the first time. Through extensive magneto-optical Kerr experiments, exploring the Villari effect, we reveal an ultralow magnetostrictive constant in nanowires, a two-order reduced value compared to bulk values. In addition, the flexible magnetic nanowires exhibit remarkable resilience sustaining bending radii similar to 5 mm, high endurance, and enhanced elastic limit compared to thin films of similar thickness and composition. The observed performance is corroborated by our micro-magnetic simulations and can be attributed to the reduced size and strong nanostructure-interfacial effects. Such stable magnetic nanowires with ultralow magnetostriction open up new opportunities for stable surface mountable and wearable spintronic sensors, advanced nanospintronic circuits, and for exploring novel strain-induced quantum effects in hybrid devices.

Ultralow magnetostrictive flexible ferromagnetic nanowires

Muscas, Giuseppe
Primo
;
2021-01-01

Abstract

The integration of magneto-electric and spintronic sensors to flexible electronics presents a huge potential for advancing flexible and wearable technologies. Magnetic nanowires are core components for building such devices. Therefore, realizing flexible magnetic nanowires with engineered magneto-elastic properties is key to flexible spintronic circuits, as well as creating unique pathways to explore complex flexible spintronic, magnonic, and magneto-plasmonic devices. Here, we demonstrate highly resilient flexible ferromagnetic nanowires on transparent flexible substrates for the first time. Through extensive magneto-optical Kerr experiments, exploring the Villari effect, we reveal an ultralow magnetostrictive constant in nanowires, a two-order reduced value compared to bulk values. In addition, the flexible magnetic nanowires exhibit remarkable resilience sustaining bending radii similar to 5 mm, high endurance, and enhanced elastic limit compared to thin films of similar thickness and composition. The observed performance is corroborated by our micro-magnetic simulations and can be attributed to the reduced size and strong nanostructure-interfacial effects. Such stable magnetic nanowires with ultralow magnetostriction open up new opportunities for stable surface mountable and wearable spintronic sensors, advanced nanospintronic circuits, and for exploring novel strain-induced quantum effects in hybrid devices.
2021
ferromagnetic materials; ferromagnetism; magnetic circuits; magnetostrictive devices; nanowires; optical Kerr effect; plasmonics; quantum theory; wearable sensors
File in questo prodotto:
File Dimensione Formato  
Muscas et al. - 2021 - Ultralow magnetostrictive flexible ferromagnetic nanowires.pdf

accesso aperto

Tipologia: versione editoriale
Dimensione 2.5 MB
Formato Adobe PDF
2.5 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/311517
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact