Aims: The aim of this study was to analyse the association between specific bioelectric impedance vector analysis (BIVA) and dual-energy X-ray absorptiometry (DXA) to assess segmental body composition using DXA as the reference technique. Methods: The sample comprised 50 young active students who practised or played different sports (25 men, age: 24.37 ± 4.79 y; 25 women, age: 24.32 ± 4.43 y) from the National Institute of Physical Education of Catalonia (INEFC). Anthropometric data (height, weight, arm, waist, and calf circumferences) and bioelectrical measurements (R, ohm; Xc, ohm) were recorded. Body composition was analysed with specific BIVA. DXA was used as the reference method to assess body composition of the whole-body, the trunk, and the limbs. The percentage of fat mass (%FMDXA) and fat-free mass index (FFMIDXA = FFM/length2) were calculated. The agreement between specific BIVA and DXA was evaluated by a depth–depth analysis, two-way ANOVA, and Pearson's correlations. Results: The depth–depth analysis showed a good agreement between DXA and BIVA (F = 14.89, p < 0.001) in both sexes and all body segments. Specific vector length (Zsp; i.e. indicative of %FM) was correlated with %FMDXA in the whole body and all body segments, and the phase angle was correlated with FFMIDXA, with he trunk in women as the only exception. Specific BIVA demonstrated to balance the effect of body size on bioelectrical measurements in both whole and segmental approaches. Conclusions: Segmental specific BIVA and DXA provided a consistent evaluation of body composition in both sexes, of the whole body and each body segment. The indices %FM and FFMI obtained with DXA were correlated to vector length and phase angle in each segment, respectively. Specific BIVA represents a promising technique for monitoring segmental body composition changes in sport science and clinical applications.

Segmental body composition estimated by specific BIVA and dual-energy X-ray absorptiometry

Stagi S.
;
Cabras S.;Buffa R.;Marini E.
2021-01-01

Abstract

Aims: The aim of this study was to analyse the association between specific bioelectric impedance vector analysis (BIVA) and dual-energy X-ray absorptiometry (DXA) to assess segmental body composition using DXA as the reference technique. Methods: The sample comprised 50 young active students who practised or played different sports (25 men, age: 24.37 ± 4.79 y; 25 women, age: 24.32 ± 4.43 y) from the National Institute of Physical Education of Catalonia (INEFC). Anthropometric data (height, weight, arm, waist, and calf circumferences) and bioelectrical measurements (R, ohm; Xc, ohm) were recorded. Body composition was analysed with specific BIVA. DXA was used as the reference method to assess body composition of the whole-body, the trunk, and the limbs. The percentage of fat mass (%FMDXA) and fat-free mass index (FFMIDXA = FFM/length2) were calculated. The agreement between specific BIVA and DXA was evaluated by a depth–depth analysis, two-way ANOVA, and Pearson's correlations. Results: The depth–depth analysis showed a good agreement between DXA and BIVA (F = 14.89, p < 0.001) in both sexes and all body segments. Specific vector length (Zsp; i.e. indicative of %FM) was correlated with %FMDXA in the whole body and all body segments, and the phase angle was correlated with FFMIDXA, with he trunk in women as the only exception. Specific BIVA demonstrated to balance the effect of body size on bioelectrical measurements in both whole and segmental approaches. Conclusions: Segmental specific BIVA and DXA provided a consistent evaluation of body composition in both sexes, of the whole body and each body segment. The indices %FM and FFMI obtained with DXA were correlated to vector length and phase angle in each segment, respectively. Specific BIVA represents a promising technique for monitoring segmental body composition changes in sport science and clinical applications.
2021
bioelectrical impedance vector analysis; BIVA; DXA; phase angle; segmental body composition
File in questo prodotto:
File Dimensione Formato  
CN2021.pdf

Solo gestori archivio

Tipologia: versione editoriale
Dimensione 669.68 kB
Formato Adobe PDF
669.68 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Stagi-OA.pdf

accesso aperto

Tipologia: versione pre-print
Dimensione 1.54 MB
Formato Adobe PDF
1.54 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/312175
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact