The paper proposes an effective layout for ground-mounted photovoltaic systems with a gable structure and inverter oversizing, which allows an optimized use of the land and, at the same time, guarantees a valuable return on investment. A case study is presented to show the technical, economic, and environmental advantages compared with conventional “fixed-tilt” and “sun-tracking” ground-mounted photovoltaic installations. The main advantage of this solution is that it maximizes the energy produced per unit of land area used; but, also considering the economic metrics, the net present value of the proposed PV arrangement solution results in a greater annual volume of energy produced and therefore of net revenues and cash flows, and greater than the compared conventional solution with modules exposed in an optimal fixed position or which make use of sun-tracking systems.
Utility Scale Ground Mounted Photovoltaic Plants with Gable Structure and Inverter Oversizing for Land-Use Optimization
Cossu, SilvestroPrimo
Conceptualization
;Baccoli, RobertoSecondo
Writing – Review & Editing
;Ghiani, Emilio
Ultimo
Conceptualization
2021-01-01
Abstract
The paper proposes an effective layout for ground-mounted photovoltaic systems with a gable structure and inverter oversizing, which allows an optimized use of the land and, at the same time, guarantees a valuable return on investment. A case study is presented to show the technical, economic, and environmental advantages compared with conventional “fixed-tilt” and “sun-tracking” ground-mounted photovoltaic installations. The main advantage of this solution is that it maximizes the energy produced per unit of land area used; but, also considering the economic metrics, the net present value of the proposed PV arrangement solution results in a greater annual volume of energy produced and therefore of net revenues and cash flows, and greater than the compared conventional solution with modules exposed in an optimal fixed position or which make use of sun-tracking systems.File | Dimensione | Formato | |
---|---|---|---|
energies-14-03084.pdf
accesso aperto
Tipologia:
versione editoriale (VoR)
Dimensione
1.67 MB
Formato
Adobe PDF
|
1.67 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.