In this work, HA/bioactive glass Functionally Graded Materials (FGMs) are obtained for the first time by means of Spark Plasma Sintering (SPS). Two series of highly dense 5 layered products, namely FGMS1 and FGMS2, are prepared under optimized SPS conditions, i.e. 1000 °C/2 min/16 MPa and 800 °C/2 min/50 MPa, respectively, using a die with varying cross section. Results arising from XRD, SEM, mechanical and biological characterization in SBF, evidence that lower temperature and higher-pressure levels used for FGMS2 samples provide better materials in terms of microstructure, compactness, hardness, elastic modulus and in vitro bioactivity. Indeed, a fully sintered and crack-free microstructure with no crystallisation at the top layer (100% bioactive glass) is correspondingly produced. The obtainment of such FGMs is quite promising, since it permits to vary the relative volume fractions of the two constituents and, consequently, tailor the biological response for specific clinical applications.

Hydroxyapatite/bioactive glass functionally graded materials (FGM) for bone tissue engineering

Luginina M.
Primo
;
Angioni D.
Secondo
;
Montinaro S.;Orrù Roberto
;
Cao G.;Cannillo V.
Ultimo
2020-01-01

Abstract

In this work, HA/bioactive glass Functionally Graded Materials (FGMs) are obtained for the first time by means of Spark Plasma Sintering (SPS). Two series of highly dense 5 layered products, namely FGMS1 and FGMS2, are prepared under optimized SPS conditions, i.e. 1000 °C/2 min/16 MPa and 800 °C/2 min/50 MPa, respectively, using a die with varying cross section. Results arising from XRD, SEM, mechanical and biological characterization in SBF, evidence that lower temperature and higher-pressure levels used for FGMS2 samples provide better materials in terms of microstructure, compactness, hardness, elastic modulus and in vitro bioactivity. Indeed, a fully sintered and crack-free microstructure with no crystallisation at the top layer (100% bioactive glass) is correspondingly produced. The obtainment of such FGMs is quite promising, since it permits to vary the relative volume fractions of the two constituents and, consequently, tailor the biological response for specific clinical applications.
2020
Bioactive glasshy; droxyapatite; Functionally Graded Materials (FGM); Spark Plasma Sintering (SPS)
File in questo prodotto:
File Dimensione Formato  
Luginina_et_al_2020_FGM_JECS_compressed.pdf

Solo gestori archivio

Descrizione: articolo online
Tipologia: versione editoriale
Dimensione 1.58 MB
Formato Adobe PDF
1.58 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/315143
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
social impact