The unstable compound octacalcium phosphate (OCP) is one of the crystalline precursors of the apatite mineral series composed by hydroxyapatite, fluorapatite and chlorapatite. The feature of OCP to react into apatite, depending on the media conditions, has been mainly exploited for biomedical applications as bone and tooth substitute material. Recently, some important applications of OCP have been documented: e.g. as electrode material for supercapacitors and as fluoride remover reagent for environmental purposes. With the aim of deepening the property of OCP to be the crystalline precursor of apatite and assessing if and how the anionic competition can influence the formation of the different apatite end-members, the OCP → apatite reaction has been here investigated placing 0.223 mmol of OCP in 50 mL aqueous solution with 0.368 mmol of dissolved fluoride, chloride, hydroxyl and carbonate anions (fluoride alone, fluoride with each of the other anions, and all the anions together) at room temperature. The post-experiment analyses of solid and liquid phases, conducted by using XRD, ESEM and ICP-OES, show that fluoride is always the main anion removed from solution during the OCP transformation reaction. The precise mineralogical characterization of solid phases formed, performed using the Rietveld algorithm, shows that fluorapatite is always the main resulting apatitic phase, followed by hydroxyapatite. Taking into account the different application fields of OCP, these results could be significant in better defining the OCP → apatite reaction in aqueous solutions where different competing anions are involved.
Mineralogical-geochemical study of the anionic competition effect on the octacalcium phosphate reaction into fluorapatite
Idini A.Primo
;Frau F.
Secondo
2021-01-01
Abstract
The unstable compound octacalcium phosphate (OCP) is one of the crystalline precursors of the apatite mineral series composed by hydroxyapatite, fluorapatite and chlorapatite. The feature of OCP to react into apatite, depending on the media conditions, has been mainly exploited for biomedical applications as bone and tooth substitute material. Recently, some important applications of OCP have been documented: e.g. as electrode material for supercapacitors and as fluoride remover reagent for environmental purposes. With the aim of deepening the property of OCP to be the crystalline precursor of apatite and assessing if and how the anionic competition can influence the formation of the different apatite end-members, the OCP → apatite reaction has been here investigated placing 0.223 mmol of OCP in 50 mL aqueous solution with 0.368 mmol of dissolved fluoride, chloride, hydroxyl and carbonate anions (fluoride alone, fluoride with each of the other anions, and all the anions together) at room temperature. The post-experiment analyses of solid and liquid phases, conducted by using XRD, ESEM and ICP-OES, show that fluoride is always the main anion removed from solution during the OCP transformation reaction. The precise mineralogical characterization of solid phases formed, performed using the Rietveld algorithm, shows that fluorapatite is always the main resulting apatitic phase, followed by hydroxyapatite. Taking into account the different application fields of OCP, these results could be significant in better defining the OCP → apatite reaction in aqueous solutions where different competing anions are involved.File | Dimensione | Formato | |
---|---|---|---|
Heliyon 2021.pdf
accesso aperto
Tipologia:
versione editoriale
Dimensione
1.13 MB
Formato
Adobe PDF
|
1.13 MB | Adobe PDF | Visualizza/Apri |
Heliyon 2021 Supplemental data.docx
accesso aperto
Tipologia:
altro documento allegato
Dimensione
2.01 MB
Formato
Microsoft Word XML
|
2.01 MB | Microsoft Word XML | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.