Canthin-6-one (Cant) is an indole alkaloid found in several botanical drugs used as medicines, reported to be gastroprotective, anti-inflammatory, anti-microbial, anti-diarrheal and anti-proliferative. We aimed to explore Cant in the management of colitis using a trinitrobenzenesulfonic acid (TNBS)-induced rat model. Cant (1, 5 and 25 mg/kg) was administered by oral gavage to Wistar rats followed by induction of colitis with TNBS. Macroscopic and histopathological scores, myeloperoxidase (MPO), malondialdehyde (MDA) and reduced glutathione (GSH) were assessed in colon tissues. Pro- (TNF-α, IL-1β and IL-12p70) and anti-inflammatory (IL-10) cytokines, and vascular endothelial growth factor (VEGF) were also quantified. Mitogen-activated protein kinase 14 (MAPK14) and Toll-like receptor-8 (TLR8), as putative targets, were considered through in silico analysis. Cant (5 and 25 mg/kg) reduced macroscopic and histological colon damage scores in TNBS-treated rats. MPO and MDA were reduced by up to 61.69% and 92.45%, respectively, compared to TNBS-treated rats alone. Glutathione concentration was reduced in rats administered with TNBS alone (50.00% of sham group) but restored to 72.73% (of sham group) with Cant treatment. TNF-α, IL-1β, IL-12p70 and VEGF were reduced, and anti-inflammatory IL-10 was increased following Cant administration compared to rats administered TNBS alone. Docking ligation results for MAPK14 (p38α) and TLR8 with Cant, confirmed that these proteins are feasible putative targets. Cant has an anti-inflammatory effect in the intestine by down-regulating molecular immune mediators and decreasing oxidative stress. Therefore, Cant could have therapeutic potential for the treatment of inflammatory bowel disease and related syndromes.

Canthin-6-one ameliorates TNBS-induced colitis in rats by modulating inflammation and oxidative stress. An in vivo and in silico approach

Leonti M.;
2021-01-01

Abstract

Canthin-6-one (Cant) is an indole alkaloid found in several botanical drugs used as medicines, reported to be gastroprotective, anti-inflammatory, anti-microbial, anti-diarrheal and anti-proliferative. We aimed to explore Cant in the management of colitis using a trinitrobenzenesulfonic acid (TNBS)-induced rat model. Cant (1, 5 and 25 mg/kg) was administered by oral gavage to Wistar rats followed by induction of colitis with TNBS. Macroscopic and histopathological scores, myeloperoxidase (MPO), malondialdehyde (MDA) and reduced glutathione (GSH) were assessed in colon tissues. Pro- (TNF-α, IL-1β and IL-12p70) and anti-inflammatory (IL-10) cytokines, and vascular endothelial growth factor (VEGF) were also quantified. Mitogen-activated protein kinase 14 (MAPK14) and Toll-like receptor-8 (TLR8), as putative targets, were considered through in silico analysis. Cant (5 and 25 mg/kg) reduced macroscopic and histological colon damage scores in TNBS-treated rats. MPO and MDA were reduced by up to 61.69% and 92.45%, respectively, compared to TNBS-treated rats alone. Glutathione concentration was reduced in rats administered with TNBS alone (50.00% of sham group) but restored to 72.73% (of sham group) with Cant treatment. TNF-α, IL-1β, IL-12p70 and VEGF were reduced, and anti-inflammatory IL-10 was increased following Cant administration compared to rats administered TNBS alone. Docking ligation results for MAPK14 (p38α) and TLR8 with Cant, confirmed that these proteins are feasible putative targets. Cant has an anti-inflammatory effect in the intestine by down-regulating molecular immune mediators and decreasing oxidative stress. Therefore, Cant could have therapeutic potential for the treatment of inflammatory bowel disease and related syndromes.
2021
Canthin-6-one
Colitis
Cytokines
Inflammatory bowel disease
TNBS
File in questo prodotto:
File Dimensione Formato  
Arunachalam et al., 2021_compressed.pdf

Solo gestori archivio

Descrizione: Articolo principale
Tipologia: versione editoriale (VoR)
Dimensione 1.17 MB
Formato Adobe PDF
1.17 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/315748
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 7
social impact