Background: Oxidative stress plays an important role in neurodegeneration, pain and inflammation. (R)-(-)- linalool (LIN) is endowed with neuroprotective, anti-nociceptive and anti-inflammatory properties. Purpose: The present study aims at investigating the hypothesis that LIN’s neuroprotective, antinociceptive and anti-inflammatory properties descend from its ability to act as antioxidant. The study challenges this hypothesis by verifying whether LIN may counteract hydrogen peroxide (H 2 O 2 )-induced oxidative stress in PC12 cells. Methods: In H 2 O 2 -exposed PC12 cells, LIN was tested on a) cell viability, measured by 3-(4,5-dimethylthiazol-2- yl)-2,5-diphenyltetrazolium bromide (MTT), b) damage of plasma membrane, measured by lactate dehydrogenase (LDH) release, c) intracellular levels of reactive-oxygen-species (ROS), d) apoptosis and e) cell cycle distribution. Results: Under H 2 O 2 -induced cell viability reduction, LIN protects PC12 cells. Likewise, LIN protects cells from oxidative damage by preventing the H 2 O 2 -dependent increase of LDH release, counteracts intracellular ROS overproduction and reduces H 2 O 2 -induced apoptosis. Finally, the results of the cell cycle analysis from cells exposed to H 2 O 2 indicate that LIN incubation reduces the number of cells induced into quiescence by H 2 O 2 in the G2/M phase. Conclusions: These findings indicate that LIN protects PC12 cells from H 2 O 2 -induced oxidative stress. This mech- anism could justify the neuroprotective, anti-nociceptive and anti-inflammatory effects of this compound and suggest LIN as a potential therapeutic agent for the management oxidative stress-mediated pain.
Neuroprotective effect of (R)-(-)-linalool on oxidative stress in PC12 cells
Bassareo, Valentina;Acquas, Elio;
2021-01-01
Abstract
Background: Oxidative stress plays an important role in neurodegeneration, pain and inflammation. (R)-(-)- linalool (LIN) is endowed with neuroprotective, anti-nociceptive and anti-inflammatory properties. Purpose: The present study aims at investigating the hypothesis that LIN’s neuroprotective, antinociceptive and anti-inflammatory properties descend from its ability to act as antioxidant. The study challenges this hypothesis by verifying whether LIN may counteract hydrogen peroxide (H 2 O 2 )-induced oxidative stress in PC12 cells. Methods: In H 2 O 2 -exposed PC12 cells, LIN was tested on a) cell viability, measured by 3-(4,5-dimethylthiazol-2- yl)-2,5-diphenyltetrazolium bromide (MTT), b) damage of plasma membrane, measured by lactate dehydrogenase (LDH) release, c) intracellular levels of reactive-oxygen-species (ROS), d) apoptosis and e) cell cycle distribution. Results: Under H 2 O 2 -induced cell viability reduction, LIN protects PC12 cells. Likewise, LIN protects cells from oxidative damage by preventing the H 2 O 2 -dependent increase of LDH release, counteracts intracellular ROS overproduction and reduces H 2 O 2 -induced apoptosis. Finally, the results of the cell cycle analysis from cells exposed to H 2 O 2 indicate that LIN incubation reduces the number of cells induced into quiescence by H 2 O 2 in the G2/M phase. Conclusions: These findings indicate that LIN protects PC12 cells from H 2 O 2 -induced oxidative stress. This mech- anism could justify the neuroprotective, anti-nociceptive and anti-inflammatory effects of this compound and suggest LIN as a potential therapeutic agent for the management oxidative stress-mediated pain.File | Dimensione | Formato | |
---|---|---|---|
A_Migheli_acquas 2021 finale.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
versione editoriale (VoR)
Dimensione
1.92 MB
Formato
Adobe PDF
|
1.92 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.