Removal of persistent pollutants from water by photoelectrocatalysis has emerged as a promising powerful process. Applied potential plays a key role in the photocatalytic activity of the semi-conductor as well as the possible presence of chloride ions in the solution. This work aims to investigate these effects on the photoelectrocatalytic oxidation of diethyl phthalate (DEP) by using TiO2 nanotubular anodes under solar light irradiation. PEC tests were performed at constant potentials under different concentration of NaCl. The process is able to remove DEP following a pseudo-first order kinetics: values of kapp of 1.25 × 10−3 min−1 and 1.56 × 10−4 min−1 have been obtained at applied potentials of 1.8 and 0.2 V, respectively. Results showed that, depending on the applied potential, the presence of chloride ions in the solution affects the degradation rate resulting in a negative effect: the presence of 500 mM of Cl− reduces the value of kapp by 50 and 80% at 0.2 and 1.8 V respectively.

Effect of potential and chlorides on photoelectrochemical removal of diethyl phthalate from water

Mais L.;Palmas S.;Mascia M.;Vacca A.
2021-01-01

Abstract

Removal of persistent pollutants from water by photoelectrocatalysis has emerged as a promising powerful process. Applied potential plays a key role in the photocatalytic activity of the semi-conductor as well as the possible presence of chloride ions in the solution. This work aims to investigate these effects on the photoelectrocatalytic oxidation of diethyl phthalate (DEP) by using TiO2 nanotubular anodes under solar light irradiation. PEC tests were performed at constant potentials under different concentration of NaCl. The process is able to remove DEP following a pseudo-first order kinetics: values of kapp of 1.25 × 10−3 min−1 and 1.56 × 10−4 min−1 have been obtained at applied potentials of 1.8 and 0.2 V, respectively. Results showed that, depending on the applied potential, the presence of chloride ions in the solution affects the degradation rate resulting in a negative effect: the presence of 500 mM of Cl− reduces the value of kapp by 50 and 80% at 0.2 and 1.8 V respectively.
2021
diethyl phthalate; photoelectrochemical degradation; persistent organic pollutants; chloride ions; TiO2 nanotubes
File in questo prodotto:
File Dimensione Formato  
Effect of potential and chlorides on photoelectrochemical removal of diethyl phthalate from water.pdf

accesso aperto

Descrizione: articolo online
Tipologia: versione editoriale (VoR)
Dimensione 1.88 MB
Formato Adobe PDF
1.88 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/318250
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact