We report here a simple synthetic route to Au-Fe(x)O(y) heterostructures in which spinel ferrite (Fe(x)O(y)) grows as a nanorod on a spherical gold (Au) seed. The large red shift in the plasmon resonance in the heterostructures could be explained by a dielectric effect (although we could not entirely exclude a contribution due to electron transfer from Au to defect states at the Au-Fe(x)O(y) interface), while the magnetic properties of the Au-Fe(x)O(y) heterostructures were basically the same as those of the corresponding nanocrystals after Au leaching. In films of Au-Fe(x)O(y) heterostructures the electrical conductivity appeared to be mediated by the Au domains.
Optical and electrical properties of colloidal (spherical Au)-(spinel ferrite nanorod) heterostructures
FALQUI, ANDREA;
2011-01-01
Abstract
We report here a simple synthetic route to Au-Fe(x)O(y) heterostructures in which spinel ferrite (Fe(x)O(y)) grows as a nanorod on a spherical gold (Au) seed. The large red shift in the plasmon resonance in the heterostructures could be explained by a dielectric effect (although we could not entirely exclude a contribution due to electron transfer from Au to defect states at the Au-Fe(x)O(y) interface), while the magnetic properties of the Au-Fe(x)O(y) heterostructures were basically the same as those of the corresponding nanocrystals after Au leaching. In films of Au-Fe(x)O(y) heterostructures the electrical conductivity appeared to be mediated by the Au domains.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.