When a physical system is modeled by a nonlinear function, the unknown parameters can be estimated by fitting experimental observations by a least-squares approach. Newton's method and its variants are often used to solve problems of this type. In this paper, we are concerned with the computation of the minimal-norm solution of an underdetermined nonlinear least-squares problem. We present a Gauss–Newton type method, which relies on two relaxation parameters to ensure convergence, and which incorporates a procedure to dynamically estimate the two parameters, as well as the rank of the Jacobian matrix, along the iterations. Numerical results are presented.
A doubly relaxed minimal-norm Gauss–Newton method for underdetermined nonlinear least-squares problems
Pes F.
;Rodriguez G.
2022-01-01
Abstract
When a physical system is modeled by a nonlinear function, the unknown parameters can be estimated by fitting experimental observations by a least-squares approach. Newton's method and its variants are often used to solve problems of this type. In this paper, we are concerned with the computation of the minimal-norm solution of an underdetermined nonlinear least-squares problem. We present a Gauss–Newton type method, which relies on two relaxation parameters to ensure convergence, and which incorporates a procedure to dynamically estimate the two parameters, as well as the rank of the Jacobian matrix, along the iterations. Numerical results are presented.File | Dimensione | Formato | |
---|---|---|---|
drmn21.pdf
Solo gestori archivio
Tipologia:
versione editoriale
Dimensione
611.87 kB
Formato
Adobe PDF
|
611.87 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.