The physical and chemical properties shown by nanoporous metals, related to their unique structure, make them very promising for application in several fields. Recently, vapor-phase dealloying has been reported as a method for the preparation of several non-noble nanoporous metals, alternatively to dealloying in aqueous solutions. Using this approach, we have successfully fabricated nanoporous Al starting from an Al20Zn80 nanocomposite obtained by ball milling. The nanocomposite was annealed at 550◦C under high-vacuum conditions, and the difference in the vapor pressures allowed the selective removal of Zn by vapor-phase dealloying. The morphology of the resulting nanoporous material was analyzed by Scanning Electron Microscopy showing pores from few to thousands of nm; moreover, the nanoporous 3D structure was observed through Serial Block Face-Scanning Electron Microscopy. A specific surface area as high as 73 m2 g−1 was estimated by N2 physisorption measurements. In addition, a fractal model able to well reproduce the morphology of nanoporous Al was built. This model has been used for predicting mechanical properties which are in good agreement with experimental data obtained by nanoindentation.

Fabrication of nanoporous al by vapor-phase dealloying: Morphology features, mechanical properties and model predictions

Pinna A.
Primo
;
Pia G.
;
Casula M. F.;Delogu F.;Pilia L.
Ultimo
2021

Abstract

The physical and chemical properties shown by nanoporous metals, related to their unique structure, make them very promising for application in several fields. Recently, vapor-phase dealloying has been reported as a method for the preparation of several non-noble nanoporous metals, alternatively to dealloying in aqueous solutions. Using this approach, we have successfully fabricated nanoporous Al starting from an Al20Zn80 nanocomposite obtained by ball milling. The nanocomposite was annealed at 550◦C under high-vacuum conditions, and the difference in the vapor pressures allowed the selective removal of Zn by vapor-phase dealloying. The morphology of the resulting nanoporous material was analyzed by Scanning Electron Microscopy showing pores from few to thousands of nm; moreover, the nanoporous 3D structure was observed through Serial Block Face-Scanning Electron Microscopy. A specific surface area as high as 73 m2 g−1 was estimated by N2 physisorption measurements. In addition, a fractal model able to well reproduce the morphology of nanoporous Al was built. This model has been used for predicting mechanical properties which are in good agreement with experimental data obtained by nanoindentation.
Aluminum
Dealloying
Fractal model
Mechanical properties
Nanocomposites
Nanoporous metals
File in questo prodotto:
File Dimensione Formato  
applsci-11-06639.pdf

accesso aperto

Tipologia: versione editoriale
Dimensione 19.35 MB
Formato Adobe PDF
19.35 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11584/320255
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact